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Abstract

Many research questions in plant science depend on surveys of the plant microbiome. When the questions depend
on answering "who is there" rather than "what are they doing," the most cost-effective method for interrogating
microbiomes is often via targeted meta-amplicon surveys. There are numerous platforms for processing and
analyzing meta-amplicon data sets, but here we will look at a flexible, reproducible, and fully customizable pipeline
in the R environment. This approach has the benefit of being able to process and analyze your data in the same
setting, without moving back and forth between standalone platforms, and further benefits from being completely
flexible in terms of analyses and visualizations you can produce, without being limited to pre-selected tools
available in point-and-click analysis engines, such as QIIME, Galaxy, or MG-RAST.
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Background

It is increasingly common to find oneself needing to take a snapshot of microbial community structure in a given
environment. From tracking key microbial members of the human gut, to comparing pathogen effects on crop-
associated mutualistic bacteria, or testing the effect of probiotic applications in preventing disease in endangered
plants, this is a common and powerful approach for gathering data (Busby et al., 2016; Zahn and Amend, 2017;
Darcy et al., 2020). Whether your question is centered on the microbes or the host, you may find yourself with cost-
effective, confusing, and potentially useful meta-amplicon data.

Typically, these data are obtained by sequencing either 16S (for bacteria) or ITS (for fungi) amplicons, which
have been tagged with sample-specific barcodes. Hundreds of samples can be simultaneously sequenced on a single
Ilumina flowcell in this manner, making this a useful method for addressing the question "who is there?", and
require high replication for statistical inferences. A sequencing center will typically return demultiplexed data, where
each sample is in its own file. It's at this point a researcher suddenly realizes they don't know what to do with all of
these files.

Here, I describe a workflow that (with minor adaptations) can be used for bacteria or fungi. The supplementary
materials contain the exact code scripts, with all the documentation and lots of comment lines, but here we describe
exactly each step, as we move from raw sequence files to hypothesis testing. Many of the tools and algorithms used
in this workflow are quite complicated, so I have made an effort to keep explanations simple and at a surface level.
More detailed explanations of each tool are best left to the associated publications.

The workflow presented here utilizes an "amplicon sequence variant" (ASV) instead of an operational taxonomic
unit (OTU) approach. OTUs rely on clustering similar sequences, typically with random seeds, and a pre-defined
set of similarity thresholds. ASVs take error-corrected sequences as the de facto unit of observation. The advantages
of ASVs include the potential to uncover diversity that could otherwise be masked by lumping sequences together,
and enabling fully reproducible results (Tipton et al., 2022). Rather than each taxonomic unit being denoted by a
pseudo-random cloud of sequences, an ASV is an exact variant that can be compared across multiple studies.

The standard approach for any meta-amplicon workflow can be broken into two main tasks: 1) turning raw data
into a sequence abundance table, and 2) using that table (with associated metadata) to generate and test hypotheses
about microbial communities. These tasks have very different pitfalls to be aware of. The first task is much more
formulaic, with only a few parameters that typically need to be tuned for each new study. The second task is more
open-ended, but carries all the usual caveats that come with data exploration and hypothesis testing. This protocol
will focus on the first task of generating a sequence abundance table from raw meta-amplicon reads, and will then
give an example workflow that explores alpha- and beta-diversity, and looks for differentially abundant taxa between
sample groups. This example will serve as a useful demonstration of how to go about exploring the derived dataset
that this workflow generates, but is specific to the example data presented here.

Software and Data sets
Software

1. cutadapt (Martin, M., 2011; version 2.10; https://cutadapt.readthedocs.io/en/stable/changes.html#v2-1-2019-
03-15)

ITSxpress (Rivers et al., 2018; version 1.0; https://github.com/usda-ars-gbru/itsxpress)

R (R Core Team, 2017; version 3.6.3; https://www.R-project.org/)

tidyverse R package (Wickham ez al., 2019; version 1.3.0; https://www.tidyverse.org/)

DADAZ2 R package (Callahan ez al., 2016; version 1.14.1; https://benjjneb.github.io/dada2/)

decontam R package (Davis et al., 2018; version 1.6.0; https://benjjneb.github.io/decontam/)

phyloseq R package (McMurdie and Holmes, 2013; version 1.30.0; https://joey711.github.io/phyloseq/)
Biostrings R package (Pages et al., 2021; version 2.54.0;
http://www.bioconductor.org/packages/release/bioc/html/Biostrings.html)

9. phangorn R package (Schliep, 2011; version 2.2.5; https://CRAN.R-project.org/package=phangorn)
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10. msa R package (Bodenhofer et al., 2015; version 1.18.0;
https://bioconductor.org/packages/release/bioc/html/msa.html)

11. ShortRead R package (Morgan et al., 2009; version 1.44.3;
https://bioconductor.org/packages/release/bioc/html/ShortRead.html)

12. corncob R package (Martin, B. D. et al., 2020; version 0.2.0; https://CRAN.R-project.org/package=corncob)

13. vegan R package (Okansen ef al., 2016; version 2.6.0; https://CRAN.R-project.org/package=vegan)

14. patchwork R package (Pedersen, 2020; version 1.0.1; https://CRAN.R-project.org/package=patchwork)

Input data

1. Input data are the demultimlexed fastq reads from sequenced bacterial 16S amplicons. There should be two
files for each experimental sample that was sequenced; a file for forward reads, and a file for reverse reads.
This workflow is written for the commonly used Illumina sequencing platform, but lonTorrent sequences can
be used with some slight modification (noted in the workflow).

2. Example data consists of custom subsets of host-associated bacterial 16S amplicons taken from 46 seagrass
samples (including PCR negatives). Files have been truncated and modified from their original form to allow
for faster computational times, while still showing significant differences in community composition between
sampling groups. They no longer represent any real study system, but are meant to be used as a teaching tool.
Raw and intermediate data are provided in the GitHub repository associated with this publication.

Procedure

Case study

Figure 1. Workflow overview.
Steps unique to either bacterial or fungal amplicons are indicated.
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This entire pipeline takes place in the R software environment due to its advantages in flexibility and customization
over popular point-and-click pipelines, such as QIIME (Bolyen et al., 2019), Galaxy (Afgan ez al., 2018), or MG-
RAST (Meyer et al., 2008). Some other environments are used as well, but they are accessed via R, for convenience.
The analysis, including all data, code, and output, exists as an R-Project within the RStudio IDE. This ensures that
all file paths are relative, and the project is portable and self-contained (Bryan, 2017). Keeping a project's data and
code in a self-contained directory means that it can be run on any computer with the appropriate software, without
modification of the file paths. The pipeline will vary slightly depending on whether you are analyzing bacterial or
fungal amplicons. We will work through the pipeline using bacterial 16S sequences, and make note as to where the
pipeline differs for fungi. All R scripts noted below are present in the GitHub repository, and are also available as
supplementary files. Sections of code that can be adapted for your own data are noted in the code comments. Figure
1 shows an overview of the following steps for bacterial and fungal amplicons. Estimated run time for this example
data set on a typical laptop computer is approximately 20-30 min.

A. Remove primers (bacteria and fungi)

The first step is to remove any PCR primers that may still be present on your reads. Often, sequencing centers
remove these by default, but it's a good idea to check. The R script "00_Remove Primers.R" walks you through
this process. In short, you provide the PCR primers that were used for generating the amplicons, and then use
the cutadapt tool to search for their presence in all possible orientations. They are then removed, and we can
proceed with quality filtration.

This process first removes all reads with ambiguous (N) bases, and then removes primer sequences and adaptors
from remaining reads. The newly modified reads are stored in a separate directory (in this case ./data/filtN/).
When working with bacterial 16S amplicons, this step can generally be accomplished by simply trimming the
first N bases from both forward and reverse reads. However, using cutadapt is a more generalized approach
that also accounts for mis-oriented reads, does not require you to know ahead of time if your primers are present
or not, and is thus reccomended. Input files are the raw amplicon read fastq files. Output files have adaptors
trimmed off.

B. Extract ITS region (fungi only)

This step only applies to fungal amplicons, but if you're working with fungi it's important that we extract the
ITS region of interest at this point. The problem is that, while ITS1 or ITS2 are good at predicting fungal
taxonomy, the primers used to amplify these regions sit inside highly conserved flanking regions (Gardes and
Bruns, 1993). Since ITS lengths can vary so greatly (Bengtsson-Palme et al., 2013), keeping these conserved
regions in our sequences can greatly bias downstream taxonomic assignment algorithms. A solution exists
though, in the itsxpress software (Rivers ez al., 2018), which can identify and trim these conserved regions from
the ends of our ITS reads. This is typically run via the command line, but we can do it from within R. The
supplementary file "00_Trim ITS Region.R" gives a thorough walkthrough example of how to extract the
ITS1 region. Input files are the (fungal) fastq files without adaptors from previous step. Output files are (fungal)
reads with flanking 18S/5.8S regions removed.

1. Quality filtration (bacteria and fungi)

Once you are sure your primers aren't present in your reads (or flanking conserved regions if analyzing
fungal ITS data), it's time to do some quality control work, to filter out ambiguous and low-quality reads, and
to trim reads where quality begins to suffer. The R script "01_Process Raw_16S_Reads.R" goes through this
step by step, but it's worth our time to explain what's going on. The workhorse software package for this and
subsequent steps is DADA?2 (Callahan ez al., 2016).

We first parse our files generated by cutadapt (and itsxpress, in the case of fungal amplicons). The only
filtration done on these so far was to remove ambiguous reads and any remaining primer sequences. The file
parsing needs to account for separate forward and reverse reads, and it does so by matching patterns in the file
names. In our example, data forward reads are denoted by "...pass_1", and reverse reads are denoted by
"...pass_2" in their names. This can vary between sequencing centers, and your reads may have different
patterns, such as "R1" and "R2", or "F" and "R." Be sure to modify the example code to match your forward
and reverse reads accordingly, where noted.
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The plotQualityProfile() function from the DADA?2 package takes a look inside these sequence files, and
allows you to make an informed judgement about how to filter and trim your raw reads. For example, in Figure
2 we are looking at the separate quality profiles of the forward and reverse reads of two samples. The X-axis
shows read length, and the Y-axis shows summary information of quality scores for every read in the file. The
green line is the mean, the orange line is the median, and the dashed orange lines are the 25th and 75th quantiles.
It's up to you to determine where good cut-off points might be for the forward and reverse reads. Keep in mind
that, to merge the reads later on, they will need to have sufficient overlap (typically >50 bases).

Example forward reads
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Figure 2. Quality profile plots for two samples.
Top row shows forward reads and bottom row shows reverse reads. Lines show summary stats along the length
of reads: green is mean, orange is median, and dashed are 25" and 75" quantiles.

In our case (and this is typical), the forward reads are generally of better quality than our reverse reads
(Figure 2). There is no "right value" for this next step, but a common practice is to truncate reads where the
mean quality score dips below 25. In this example, that roughly lies at base position 250 for our forward reads,
and at base position 200 for our reverse reads. These values vary between data sets, so make your best
judgement. When in doubt, it's best to be conservative.

If you are working with fungal ITS reads, it is typical that reverse reads aren't of sufficient quality to merge
with forward reads. Especially with variable ITS lengths, it is somewhat common practice to forego using
reverse reads, and to process just the forward reads output by itsxpress (Darcy et al., 2020; Tipton et al., 2019,
2022).

The trimming and filtration step will discard some reads, but how many depends on how stringently you
set the parameters. If you notice that the majority of your reads are being discarded, you might try relaxing the
maxEE parameter slightly. Our reads had rather low quality scores, so it's not surprising that roughly half of
them were rejected by our filtration step (Table 1). Figure 3 shows a comparison of quality profiles for a single
sample before and after our filtration step. You can clearly see that the reads have been truncated at 250
nucleotides, and that mean quality scores are higher along the length of the reads. Input files for bacteria are
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fastq files stripped of adaptors. Input files for fungi are fastq files stripped of adaptors and flaking 18S/5.8S

regions. Output files are fastq files filtered and trimmed to meet set quality thresholds.

Table 1. Example output from filtration step (first 3 files shown)

reads.in reads.out
2554 pass_1.fastq.gz 5000 2143
2555 pass_1.fastq.gz 5000 2245
2557 pass_1.fastq.gz 5000 2056

Unfiltered
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Figure 3. Comparison of quality profiles for a single sample pre- and post-filtration.

2. ASV inferrence (bacteria and fungi)

Now that we have a set of quality-controlled sequence files, we're ready to perform a "denoising" step,
that can predict and correct likely sequencing errors. This is an important step when analyzing exact "amplicon
sequence variants" (ASVs), as opposed to "operational taxonomic units" (OTUs). There is always a bit of
"noise" in sequence data, representing sequencing errors. OTUs were, in part, conceived of as a way to deal
with this constant threat of sequencing noise. By clustering highly similar sequences together, it accounts for
small amounts of variation. However, much of that variation is real and informative (Callahan ef al., 2017,
Tipton et al., 2022). Methods now exist to discover and correct sequencing errors, allowing us to use ASVs.
The advantages include finer taxonomic resolution, the potential to discover patterns that might be hidden by
artificially clustering sequences together, and most importantly, the ability to easily combine data from multiple
studies. Since each ASV is an actual sequence, rather than an undefined cloud of sequences (as with OTUs),
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they are directly comparable outside of a given study. This facilitates reproducibility and re-use, such as in
meta-analyses.

The DADA2 R package gives us a set of tools for inferring these ASVs. First, we build a mathematical
profile of error rates along the length of our reads. In basic terms, we can think of this error profile as being a
mathematical representation of our quality profile plots (Figure 3). The learnErrors() function is a machine-
learning tool that builds an error model based on your data. Figure 4 shows this error model. What you're
looking for is a decent fit between observed and estimated errors, and a decline in error as quality scores
increase. Thus, it doesn't need to be a perfect fit. If your model looks reasonable (as ours does in Figure 4), you
are ready to use that error model to correct sequence errors. A poorly fit error model (indicated by large
discrepancies between observed points and the model fit line) may be a result of binned quality scores, or a
lack of ‘diversity’ in quality scores. In this case, be sure you are using the raw sequence read files for creating
the error profile, not reads that have been pre-processed in any way.

The dada() function performs denoising based on the estimated error model. In essence, it is performing
statistical tests that determine whether a given sequence was observed too many times to have been caused by
sequencing errors in currently inferred sequences (Rosen ez al., 2012). The dada() function is run separately on
forward and reverse reads, and the output is a set of sequence variants that were inferred from the "noisy" input
sequences. From this point, we are ready to merge our forward and reverse reads and construct a sequence table.
These tasks are accomplished with the mergePairs() and makeSequenceTable() functions, respectively. Input
files are quality trimmed/filtered fastq files.
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Figure 4. Estimated error rate plot.
Black dots show observed error frequencies at a given quality score (X-axis); Black lines show the estimated
error model for each putative error type. Panels represent modeled substitutions; “A2C” is a model of the
frequency that an A nucleotide in the real sequence shows up as a C nucleotide in the sequence read, for example.
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3. The Remove chimeras (bacteria and fungi)

Chimeric sequences result from incomplete extension during PCR. Partial amplicons can serve as "false
templates" for primers to bind to, resulting in reads that are composed of more than one true sequence. Chimera
detection involves evaluating distinct matches between the left-side and right-side of reads and potential
"parent" source reads. In practice, this detection and removal step can be conducted with the
removeBimeraDenovo() function, as shown in the R script "01_Process_Raw_16S_Reads.R."

4. Remove contaminant sequences (bacteria and fungi)

While sadly not universally practiced, including and sequencing negative controls is a crucial step when
performing meta-amplicon studies. Often, these control samples are blank DNA extractions that are then
sequenced. This allows us to discover DNA sequences that were present in the lab environment that do not
necessarily represent meaningful diversity in our real samples. The decontam package (Davis et al., 2018) has
been implemented to deal with these negative controls, using them to detect likely contaminant sequences. The
way we will use this package is by giving the isContaminant() function our newly created sequence table, and
a list of which samples are negative controls. Your sample metadata spreadsheet likely contains study-relevant
information about each sequenced sample, but should also include a column denoting whether a sample is a
negative control (Table 2 shows an example metadata sheet formatted correctly). Sequences with increased
prevalence in control samples can then be identified and removed. Once potential contaminants are removed,
we can then remove the negative control samples from further downstream steps since their job is done.

Table 2. Example metadata organization with column denoting whether a given sample is a negative
control

SamplelD Island Host_ID Lat Lon Status Control
CHPd62 Peros Banhos H. ovalis -5.42721 71.77779 healthy FALSE
CHPd63 Peros Banhos H. ovalis -5.42721 71.77779 healthy FALSE
CHPd65 Peros Banhos H. ovalis -5.42721 71.77779 impacted FALSE

BLANK1 NA NA NA NA NA TRUE

BLANK2 NA NA NA NA NA TRUE

5. Assign taxonomy (bacteria and fungi)

Assigning taxonomy to DNA barcodes is a complicated subject. The success and accuracy of any
assignments depend on the algorithms and databases that you use. In fact, with phylogeny-independent
taxonomic assignments, the current limiting factors are the completeness and accuracy of the databases to which
we match our sequences. With this in mind, it is critical that you carefully consider what methods to use. The
RDP Naive Bayesian Classifier algorithm (Wang et al., 2007) is one such algorithm that is widely used and has
several advantages. First, it does not rely on sequence alignments, which makes it suitable for fungal ITS studies.
Second, it is incredibly fast compared to algorithms such as BLAST. Third, it provides bootstrapped confidence
values to all assignments, and allows matching to the "least common ancestor," reducing the incidence of false
positive matches. Its performance for species-level taxonomic assignments of bacteria is lacking, and new
information has shown that exact 100% matching is the only justifiable method for assigning species to bacterial
ASVs (Edgar, 2018). A selection of properly formatted reference files for popular taxonomic databases are
available at http:/benjjneb.github.io/dada2/training.html. Here, we use two complementary methods to assign
taxonomy to our reads: 1) the RDP Classifier using the RDP 16S Training Set database, implemented via the
assignTaxonomy() function, and 2) exact 16S matching for species-level assignments, implemented via the
addSpecies() function. The "Assign Taxonomy" section of "01 Process Raw 16S Reads.R" script covers
these steps. These functions take our sequence table as input and return a data frame matching our ASVs to
taxonomy at the deepest levels that could be assigned unambiguously.

If you are using fungal ITS reads, taxonomic assignment is essentially the same, but you will need to use
a eukaryotic database such as the UNITE Eukaryotic Database (Abarenkov et al., 2020), instead of a bacterial
16S database, and the addSpecies() function should be omitted.
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The last step in this script is to construct a phyloseq object, in which to store your ASV table, along with
your sample metadata, and taxonomic assignments. The phyloseq package (McMurdie and Holmes, 2013)
provides a data structure that can combine a sequence abundance table (like our ASV table), taxonomic
information, sample metadata, and a phylogenetic tree into one object, which makes working with these
disparate tables much simpler. Output file is a compressed phyloseq object stored as an R object file.

6. Build phylogeny (bacteria only - optional)

If you're working with bacterial 16S, it can be a good idea to build a phylogeny of your ASVs. Some
analyses, such as UniFrac community distance measures, use phylogeny-aware methods to improve
comparisons between communities (Lozupone and Knight, 2005). However, fungal ITS reads are generally not
alignable, and thus cannot be used to build phylogenies. This step is not required for most downstream analyses,
so if you've got ITS reads, just skip to the next section.

It is beyond the scope of this paper to cover all the methods for building phylogenies, so we will focus on
a simple and effective "good enough" approach within the R environment, using the msa and phangorn R
packages (Schliep, 2011; Bodenhofer et al., 2015). The general workflow is to align your ASVs to each other,
build a distance matrix, and then construct a phylogenetic tree from that matrix. The script
"02_Build_and add Phylogeny.R" walks you through a typical workflow.

Our phyloseq object currently contains our ASV table, taxonomic assignments, and sample metadata. The
sequences associated with each ASV can be easily extracted from our phyloseq object, and aligned using the
MUSCLE algorithm (Edgar, 2004) using the msa() function. This alignment is then used to generate a
maximum likelihood distance matrix with the dist.ml() function. We can then construct an initial tree using the
Neighbor-Joining method, implemented with the NJ() function. The phangorn package has a range of tools for
optimizing and updating trees based on different models, but for our purposes, a simple Neighbor-Joining tree
will suffice as "good enough for now", since none of our anticipated downstream analyses will depend on
having a phylogeny. If phylogenetic methods are essential for your own analyses, readers are encouraged to
explore the phangorn package in further detail (see phangorn vignette at https:/cran.r-
project.org/web/packages/phangorn/vignettes/Trees.html). After we have a tree that we are comfortable with,
we can add it to our phyloseq object, and move on to tidying our dataset in preparation for exploratory analyses.

7. Final cleanup and preparation for analyses (bacteria and fungi)

Our 16S primers can amplify non-bacterial DNA, such as chloroplasts or Archaea, in addition to bacteria.
Unless these sequences are part of your research question, now is a good time to remove them. The script
"03_Clean_and Explore Data.R" walks through a demonstration of how to use phyloseq to subset and
manipulate our full data set.

First, we use the subset_taxa() function to remove any taxa that were not unambiguously assigned to the
kingdom Bacteria. This removes any archaea or unknown sequences that were detected. Next, we use the same
function to remove taxa that were assigned to known chloroplast identities. Finally, we can clean up our ASV
table by removing any samples that are now "empty", by using the subset samples() function. In other words,
some samples may have only contained reads that were non-bacterial, so now that we have removed those reads,
those samples will contain no information, and they should be dropped. This is usually only an issue when
sequencing depth is very shallow. With this cleanup completed, we are now ready to start exploring our data
set.

8. Exploration and hypothesis testing (bacteria and fungi)

The script "04_Explore_and Test Hypotheses.R" walks you through an example of how to use phyloseq
to explore a meta-amplicon data set. Of course, this exploration and analysis process will vary greatly between
studies, as it is completely contingent on what questions you set out to address. In our case, the example data
were collected to assess seagrass-associated bacteria in pristine and impacted seagrass communities. The
metadata may be different, but the techniques will not change, regardless of whether you are studying plant
endophytes or human gut microbiomes. Additionally, there are no differences with regard to fungal or bacterial
amplicons at this point. In fact, it is possible to combine fungal and bacterial phyloseq objects at this point, if
you are studying them simultaneously for the same set of samples using the merge phyloseq() function. Here,
we will briefly outline some steps in a typical analysis. The code documentation in the associated script goes
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into more detail, but this is meant to be simply an example for how to use the functions mentioned here, and it
is unlikely that any other study will follow these exact steps.

The script begins with a simple exploration of the various phyloseq accessor functions. These make it
straightforward to access information without having to understand the structure of the phyloseq object. For
example, we can access any of the individual data components independently: sample_data() returns our
metadata, otu_table() returns our sequence (ASVs, in our case) abundance table, tax table() returns our
taxonomic assignments, and phy_tree() returns our phylogenetic tree.

Initially, many analyses start with a quick exploration of alpha diversity. The estimate richness() and
plot_richness() functions make this a simple task (Figure 5). Since we cannot guarantee equal sequencing depth
between all samples, for most analyses it is important to realize that amplicon sequence data is compositional
in nature (Gloor et al., 2017). Traditionally, rarefying data to a common sequence depth was the preferred
method to adjust for discrepancies in sequencing effort, but this has been shown to needlessly remove
potentially useful data (McMurdie and Holmes, 2014). We will simply convert our read counts into relative
abundance values using the transform_sample_counts() function.

Next, we can take a look at beta-diversity, using ordination (ordinate() from the phyloseq package) and
permANOVA (adonis() function from the vegan package). It is reasonable to try several ordination methods as
we have done (Figure 6), depending on your data set. Figure 6 seems to show a strong separation of bacterial
communities based on "Colony Color." We can test this statistically using adonis(), where we model our ASV
table as the response, and Colony_Color and Island as predictors (Table 3).

While permANOVA can tell us whether any patterns in community dissimilarity exist, it doesn't tell us
which taxa are driving those differences. To answer that question, we must turn to special methods designed to
detect differential abundant taxa. There are many commonly used tools for this, such as DESeq2 (Love et al.,
2014), and ALDEx2 (Fernandes et al., 2013), but here we will use the corncob package (Martin, B. D. et al.,
2020) because it is capable of modeling differential variance in addition to abundance in a user-friendly way,
and is well integrated with phyloseq. Note that all of these methods depend on non-transformed data (raw
counts), unlike our beta-diversity measures, which needed normalized counts.

Table 3. PermANOVA model output. Island is a significant predictor of community dissimilarity, but
Status is not.

term df SumOfSqs R’ statistic P-value
meta$Status 1 0.1860 0.01445 0.6425 0.630
metaS$Island 1 1.3744 0.10679 4.7467 0.003
meta$Status:meta$lsland | 1 0.0170 0.00132 0.0585 1.000
Residual 39 11.2925 0.87743
Total 42 12.8699 1.00000

10
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Figure S. Alpha diversity boxplots for observed counts, Shannon, and Simpson diversity measures.

Figure code:
plot richness(ps, x = "Colony Color", measures = c("Observed","Shannon","Simpson"),
color = "Colony Color", sortby = "Observed") +
geom boxplot (alpha = .5) + theme minimal ()
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Figure 6. Comparison of ordination methods.

Top = Detrended correspondence analysis (DCA) using Bray-Curtis dissimilarity, Middle = Non-metric multidimensional
scaling (NMDS) using Bray-Curtis dissimilarity, Bottom = NMDS using UniFrac dissimilarity. The same pattern is seen with
each method.
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Figure 7 . Relative abundance plots for taxa identified as differentially abundant in a corncob model.

Individual samples are on the x-axis, and are colored by "Island." Points show relative abundance, and bars
show dispersion.

Result interpretation

Our raw forward and reverse reads showed rather sharp quality score dropoff at around position 250 and 200,
respectively (Figure 2). Our quality control steps were effective at removing low quality regions and filtering out
ambiguous reads (Figure 3). In fact, an average of 50% of all reads from each sample were removed (Table 1). This
is rather a high proportion, but not unheard of. Your own data may fare better or worse than this, and it is up to you
to determine meaningful quality thresholds that balance fidelity with data retention. In general, it is advised to lean
towards a conservative approach, retaining only those reads in which you are confident.

In this example, we conducted only a few of many possible analyses with this mock data set, but it seems clear
that a couple of patterns stand out. First, the environmental status of sites for seagrasses (impacted vs healthy) does
not appear to have a significant effect on seagrass-associated bacterial communities, either in alpha- or beta-diversity
measures (Figure 5; Table 3). However, location (Island) influences community structure (Table 3). Further,
differential tests revealed three bacterial taxa (Pseudoalteromonas, Cobetia, and Vibrio) that were differentially
abundant in samples between the two islands (Figure 7). The visualizations and tests you employ depend on the
underlying questions in your study and the metadata available. These example analyses should serve as a starting
point for working with microbiome data sets in R.
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