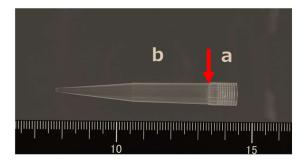
3	Test environment: A horizontal worktable in a laboratory in accordance with JIS 8703-198	33,
4	ISO 554-1976 (temperature 23° C, relative humidity 50%)	
5		
6	1) Average diameter of filter opening	
7	1 Examine the average diameter of filter opening by referring to the catalog of the sheet	
8	2 Observe under a polarized light microscope for sheets with a diameter of filter opening	of
9	less than 10 μ m	
10	3 Confirm opening size by using scanning electron microscopy (SEM), if possible	
11		
12	2) Thickness	
13	1 Examine the thickness by referring to the catalog of the sheet	
14	2 Prepare 10 test sheets (cut with scissors to 20 cm x 20 cm square)	
15	3 Put 10 test sheets on a horizontal worktable	
15 16	 3 Put 10 test sheets on a horizontal worktable 4 Lay a glass plate (200 ± 2 mm square, a mass of 82 ± 2 g, a thickness of 0.7 mm) on t 	:he
		:he

19

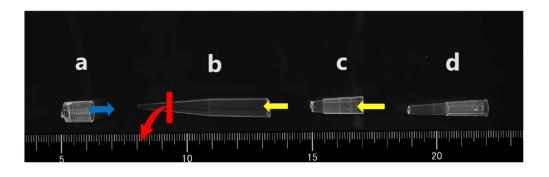
1

2

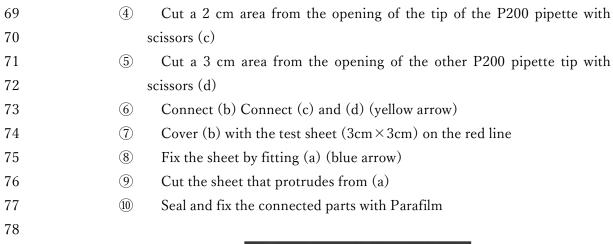
Detailed operation manual of six requirements


20 3) Chemical resistance

- 21 1 Cut in half the sheet in order to compare each other
- 22 2 Immerse the whole part of one cut sheet in the test solution (xylene)
- 23 3 Cover the sheet with a lid and kept at room temperature for about 8 h
- 24 4 Wash with water, dried, and observe both samples
- 25 5 If no obvious change is observed, repeat the procedure 1-4 by changing the test solution
- 26 (formalin, methanol)
- 27

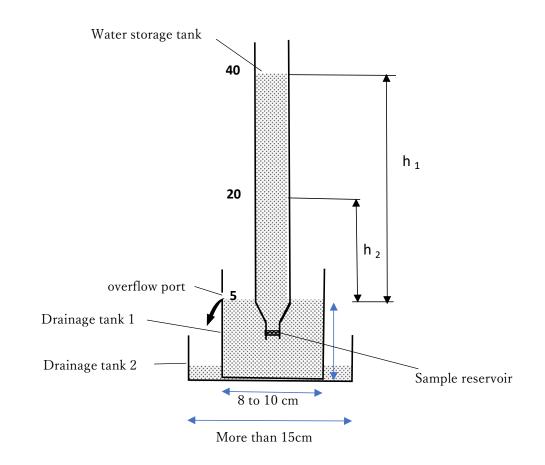

28 4) Water permeability test

29	Equipment / Consumables
30	• 1 x 50 mL plastic measuring pipette
31	• P1000 Pipette Tips (without filter) (Gilson) 1 pc
32	• P200 Pipette Tips (without filter) (Gilson) 2 pcs
33	• Container 1 (at least 8-10 cm in diameter and 15 cm deep, made of a material that
34	can be easily pierced) for example, 1 L-PET bottle.
35	• Container 2 (at least 15 cm in diameter and at least 5 cm in depth)
36	• Burette stand
37	• Palafilm
38	• stopwatch (measures up to 2 decimal places)
39	• funnel
40	• 500mL beaker
41	Scissors and/or cutter
42	• plastic cutter
43	• drill
44	
45	Solution
46	• 500mL distilled water


47	
48	Test sheets (cut with scissors and/or cutter to 3cm x 3cm square)
49	
50	
51	1 Make-up for water permeability test device
52	1 Create a water storage tank
53	Cut off the suction opening of the 50mL disposable measuring pipette with a
54	plastic cutter
55	2 Create drainage tank 1
56	Drill a hole to make an overflow port at a height of about 12 cm from the
57	bottom of the container 1 (inner diameter of hole, about 10 mm)
58	3 Create a sample reservoir
59	1 Cut the attachment part (a) of the tip of the P1000 pipette with scissors
60	from the tip body (b) indicated by red arrow



② For one sheet, cut off at 2 cm from the tip of (b). In the case of two or more sheets, cut off 1.5 cm from the tip. (Red line)



- ③ Measure the inner diameter (cm) of the cut side of (b) and calculate the cross-sectional area (inner diameter x inner diameter x 3.14) (Crosssectional area of test sheet).

84		Assembly diagram of permeability test device
85		
86	4	Vertical installation of a water storage tank on the workbench using a Burette stand
87	5	Assemble water storage tank, drainage tank 1, drainage tank 2, according to the
88		reference above diagram
89	6	Adjust the height of the overflow opening to "5mL" on the scale of a 50mL
90		disposable measuring pipette
91	7	Attach the sample reservoir to the end of the reservoir
92	8	Wrap the parafilm to prevent liquid leakage
93		
94	2 Opera	tion Procedure
95		
96	1	Fill water storage tank with water by using a funnel until it flows out of the
97		overflow port
98	2	Measure transit time (t2-t1 value) it takes for the water in a water storage tank to
99		pass from the "40mL" scale to the "20mL" scale using a stopwatch
100	3	Repeat the operation in step 2 and confirm that the t2-t1 value was almost constant
101	4	Measure t2-t1 value 5 times
102		
100	2 Calaul	

103 3 Calculation

104 The permeability coefficient was calculated by the following formula, applying JIS A

105 1218:2020.

106
$$k = 2.303 \frac{aL}{A(t_2 - t_1)} \log_{10} \frac{h_1}{h_2}$$

κ:	permeability coefficient	cm/s
a:	cross-section area of storage tank	cm2
L:	thickness of test sheet	cm
A:	cross-section area of test sheet	cm2
t ₂ -t ₁ :	measurement time	S
h ₁ :	water level difference at time t1	cm
h ₂ :	water level difference at time t2	cm

108

100	-)	***	•	
109	5)	Water	retention	test

- 110 1 Prepare 3 sheets cut in 100 mm x 100 mm sized square.
- 111 2 Measure the mass of a cut sheet in the standard condition to 1 mg-level
- 112 3 Immerse 3 sheets in the water for at least 15 min
- 113 4 Remove 3 sheets from the water with tweezers
- 114 5 Allow the water to drip off for at least one min
- 115 6 Measure the mass of a cut sheet after wetting and dripping off the water (m2)
- 116 7 Calculate the water retention rate by the following formula
- 117 $m=(m2-m1)/m1 \ge 100$
- 118 m: water retention rate (%)
- 119 m1: mass of the specimen in the standard condition (mg)
- 120 m2: mass of the specimen after wetting and dripping off the water (mg)
- 121 8 Calculate the average value in accordance with JIS A 5209:2014, Rule B (rounding
- 122 method).
- 123
- 124 6) Cell transit test
- 125 Equipment / Consumables
- 126 P1000 Pipette Tips (without filter) (Gilson) 1 pc
- 127 P100 Pipette (Gilson) 2 pcs
- 128 P100 Pipette

129	• P20 Pipette
130	• P20 Pipette Tips
131	• 2mL micro tube
132	• 1.5mL/2mL microtube rack
133	• microscope slide
134	• alcohol-resistant marking pen
135	• optical microscope (400x)
136	• aspirator
137	• 50mL plastic centrifuge tube
138	• cell counterplate (Watson, Neubauer Improved)
139	• Palafilm
140	• Scissors
141	
142	Solution/Reagent
143	• 10% neutral buffered formalin solution
144	• Residual specimen (ascites or pleural effusion) or cultured cells (1 x 10 ⁶ -10 ⁷ cells)
145	• PBS 70mL
146	• 0.4% Trypan blue solution
147	• 95% Ethanol
148	Papanicolaou staining solution
149	
150	1 Preparation of sample reservoir (described in line 58-80)
151	2 Preparation of cell suspension (collection of cells from ascites and/or pleural fluid)
152	1 Centrifugation residual specimens (ascites and/or pleural effusion)at 2000 rpm
153	for 5 min
154	2 Gently remove the supernatant with an aspirator
155	3 Collect more than 1mL of cell pellet
156	4 Add 30ml to 35ml of PBS and mix by inverting
157	5 Stand still for 15 min
158	6 Gently remove the supernatant with an aspirator
159	7 Repeat PBS wash (step 4-6)
160	8 Counts all cells in a cell suspension
161	(1) Add 90 $\mu\ell$ of 0.4% trypan blue solution to 10 $\mu\ell$ of cell suspension (10-fold
162	dilution).
163	② Gentle vortex for 2-3 sec

164			3 Inject 6 $\mu \ell$ samples with a P20 pipette through the sample inlet of the cell
165			counter plate
166			④ Count the number of cells in 4 compartments using the cell counter plate.
167			(5) Calculate the number of cells per 1 $\mu \ell$ of stock solution {(average number of
168			cells of 4 compartments) \times 10 \times (dilution factor)}
169			
170			Note : The count of one plot should be about 100.
171			If the number of cells is large, dilute the cell suspension 10 to 100 times with PBS.
172			If the number of cells is small, reduce the amount of 0.4% trypan blue solution
173			added to the cell suspension 10 $\mu \ell$.
174			
175		7	Adjusted to 1 x 10 6 - 10 7 cells/ml in 10% neutral buffered formalin solution
176			
177	3	Oper	ation Procedure
178		1	Apply 600 $\mu \ell$ of cell suspension (1 x 10 ⁶ -10 ⁷ cells/ml) to the sample reservoir (filter
179		as	sembly) with a P1000 pipette
180		2	Allow to natural filtration
181		3	Measure the number of cells in the filtrate
182			① Write an enclosure on a glass slide with an alcohol-resistant marking pen
183			(2) 15 $\mu \ell$ drops of 95% ethanol in the enclosure, followed promptly by 15 $\mu \ell$
184			drops of filtrate
185			③ Allow to natural drying
186			④ Perform Papanicolaou staining
187			5 Count cells in 10 fields of view at 400x under the microscopy
188			
100			