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Supplementary Figure 1

Supplementary Figure 1. “Data availability” section of SpaGCN paper.
This figure uses SpaGCN paper as an example to show the advantage of pysodb in simplifying the data availability. 
(A): In its original format, the data is linked to a variety of data storage platforms, requiring readers to navigate each 
platform for download. Additionally, because these data sets originate from different technologies, substantial 
processing time is required prior to applying the method itself.
(B): In contrast, with the application of pysodb, the authors only need to supply the dataset identifiers in SODB, 
enabling readers to retrieve the processed data in a more time-efficient manner with pysodb.

Data availability
All data can be loaded by pysodb [https://protocols-pysodb.readthedocs.io/en/latest/] using 
the following Data IDs:
(1) Human primary pancreatic cancer ST data: [moncada2020integrating]
(2) LIBD human dorsolateral prefrontal cortex 10x Visium data: [maynard2021trans]
(3) Mouse posterior brain 10x Visium data: [10x]
(4) Mouse cortex SLIDE-seqV2 data: [stickels2020highly]
(5) Mouse visual cortex STARmap data: [Wang2018Three_1k]
(6) Mouse olfactory bulb ST data: [stahl2016visualization]
(7) Mouse hypothalamus MERFISH data: [moffitt2018molecular]
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Supplementary Figure 2

Supplementary Figure 2. Applications of pysodb and spatially variable analysis on other spatial omics.
(A-C): Application on a spatial genomics data generated by Slide-DNA-Seq.
(D-F): Application on a spatial proteomics data generated by MIBI-TOF.
(G-I): Application on a spatial metabolomics data generated by MALDI.
(J-L): Application on a spatial multi-omics data generated by DBiT-Seq.
Taking (A-C) as an example, the data information is shown in (A). SOView visualization is shown in (B). Spatially 
variable analysis results (using Sepal) are shown in (C), left: top spatial variation, right: bottom spatial variation.
Note that different spatial omics generated different features, e.g., loci for spatial genomics, protein for spatial 
proteomics, mass-to-charge ratio (m/z) for spatial metabolomics, and gene/protein for spatial multi-omics.
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Supplementary Figure 3

Supplementary Figure 3. Applications of pysodb and spatially clustering on other spatial omics.
(A-C): Application on a spatial genomics data generated by Slide-DNA-Seq.
(D-F): Application on a spatial proteomics data generated by MIBI-TOF.
(G-I): Application on a spatial metabolomics data generated by MALDI.
Taking (A-C) as an example, the data information is shown in (A). SOView visualization is shown in (B). Spatial 
clustering results (using SpaceFlow) and reference are shown in (C), left: specific markers (edited from Zhao et al. 
Nature 2022) are used for tissue structure reference, right: spatial clustering result.
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Supplementary Figure 4

Supplementary Figure 4. Applications of pysodb and spatial data integration on other spatial omics.
(A-C): Application on a spatial proteomics data generated by MIBI-TOF.
(D-F): Application on a spatial proteomics data generated by Iterative Indirect Immunofluorescence Imaging (4i).
Taking (A-C) as an example, the data information is shown in (A). SOView visualization for data slices to be integrated 
are shown in (B), top: patient 4, bottom: patient 9. The results before and after integration, and the tissue structure 
references are shown in (C), left: specific markers (edited from Keren et al.  Cell 2018) are used for tissue structure 
reference and white arrows indicate tumor region, middle: before integration, right: after integration.
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Supplementary Table 1. Summary of parameters.

Please find the excel file in Supplementary Information.



Supplementary Table 2. Summary of Docker images.
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Case study 7: Generalizability to more spatial omics data 

CRITICAL: Six case studies are previously supplied on using pysodb, including spatially variable 
gene detection, spatial clustering, pseudo-spatiotemporal analysis, spatial data integration, 
spatial data alignment, and spatial spot deconvolution. For this particular case study, we aim to 
provide more analysis to explore other spatial omics data using pysodb, such as spatial 
proteomics, metabolomics, genomics, and multi-omics. 

Spatially variable analysis for Spatial genomics data (Timing ~ 8~9 h) 

This section demonstrates the detection of spatially variable features using Pysodb and Sepal, 
applied to spatial genomics data obtained from a mouse cerebellum via Slide-DNA-Seq. 
 
1. Import packages and set configurations, enter the following commands: 
 
import numpy as np 
# Import sepal package and its modules 
import sepal.datasets as d 
import sepal.models as m 
import sepal.utils as ut 
 
2. Import, initialize, and load data using Pysodb: 
 
# Import pysodb package 
import pysodb 
# Initialization 
sodb = pysodb.SODB() 
 
# Define names of the dataset_name and experiment_name 
dataset_name = 'zhao2022spatial' 
experiment_name = 'mouse_cerebellum_1_dna_200114_14' 
# Load a specific experiment 
# It takes two arguments: the name of the dataset and the name of the experiment to load. 
adata = sodb.load_experiment(dataset_name,experiment_name) 
 
CRITICAL STEP: A 'load_experiment' function is called with two 'dataset_name' and 
'experiment_name' variables to load a specific experiment. Users can download data according to 
their needs by changing different 'dataset_name' and 'experiment_name.'  
 
Then, an AnnData object can be saved to an H5AD file format with the filename 
'mouse_cerebellum_1_dna_200114_14.h5ad' by entering the following command: 
 
adata.write_h5ad('mouse_cerebellum_1_dna_200114_14.h5ad') 



 
3. Perform Sepal to spatially variable gene detection for spatial genomics data 
First, create an instance of the 'RawData' class with the input file 
'mouse_cerebellum_1_dna_200114_14.h5ad,' and enter the following command: 
 
raw_data = d.RawData('mouse_cerebellum_1_dna_200114_14.h5ad') 
 
Next, create an instance of the 'UnstructuredData' class, which is a subclass of the 'CountData' 
class in Sepal, specifically designed to handle non-Visium or non-ST data, enter the following 
command: 
 
data = m.UnstructuredData(raw_data, eps = 0.1) 
 
CRITICAL STEP: A new 'UnstructuredData' object named 'data' using the following input 
arguments:(1) raw_data: A 'RawData' object containing the count matrix and other related data 
for the non-Visium or non-ST dataset; (2) eps: A float value representing the allowed difference in 
distance from the specified radius for finding approximate neighbors in the dataset. The default 
value is 0.1. 
 
The 'propagate' function simulates diffusion on spatial genomics data, applies normalization and 
scaling, and saves the scaled diffusion times for each profile in a data frame named 'times.' These 
diffusion times represent the rate at which gene expression levels disperse spatially during the 
diffusion process:  
 
times = m.propagate(data, normalize = True, scale =True) 
 
Next, select the top 10 and bottom 10 profiles based on their diffusion times, and enter the 
following commands: 
 
# Selects the top 10 and bottom 10 profiles based on their diffusion times 
# Set the number of top and bottom profiles to be selected as 10 
n_top = 10 
# Computes the indices that would sort the times DataFrame in ascending order 
sorted_indices = np.argsort(times.values.flatten()) 
# Reverses the order of the sorted indices to obtain a descending order 
sorted_indices = sorted_indices[::-1] 
# Retrieves the profile names corresponding to the sorted indices 
sorted_profiles = times.index.values[sorted_indices] 
# Select the top 10 profile names with the highest diffusion times 
top_profiles = sorted_profiles[0:n_top] 
# Selects the bottom 10 profile names with the lowest diffusion times 
tail_profiles = sorted_profiles[-n_top:] 
# Retrieves the top 10 profiles from the times DataFrame 
times.loc[top_profiles,:] 



 
Define a 'pltargs' dictionary and then invoke the 'plot_profiles' function twice by changing 
'tail_profiles' and 'top_profiles' parameters to create separate visualizations of the top and low 
spatial genomics profiles. Execute the following commands in turn:  
 
# Inspect detecition visually by using the "plot_profiles function for first 10 SVG 
# Define a custom pltargs dictionary with plot style options 
pltargs = dict(s = 5, cmap = "magma", edgecolor = 'none', marker = 'H',) 
# plot the profiles 
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,top_profiles], crd = data.real_crd, rank_values = 
times.loc[top_profiles,:].values.flatten(), pltargs = pltargs,) 
# See Supplementary Fig. 2c (left) 
 
# Inspect detecition visually by using the "plot_profiles function for last 10 SVG 
# Define a custom pltargs dictionary with plot style options 
pltargs = dict(s = 5, cmap = "magma", edgecolor = 'none', marker = 'H', ) 
# plot the profiles 
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,tail_profiles], crd = data.real_crd, rank_values = 
times.loc[tail_profiles,:].values.flatten(), pltargs = pltargs,) 
# See Supplementary Fig. 2c (right) 

Spatially variable analysis for Spatial proteomics data (Timing ~ 1 min) 

This section illustrates the application of Pysodb and Sepal in detecting spatially variable features, 
utilizing unprecedented spatial proteomics data derived from human triple-negative breast 
cancer through MIBI-TOF. 
 
4. Import packages and set configurations, enter the following commands: 
 
import numpy as np 
# Import sepal package and its modules 
import sepal.datasets as d 
import sepal.models as m 
import sepal.utils as ut 
 
5. Import, initialize, and load data using Pysodb: 
 
# Import pysodb package 
import pysodb 
# Initialization 
sodb = pysodb.SODB() 
 
# Define names of the dataset_name and experiment_name 



dataset_name = 'keren2018a' 
experiment_name = 'p9' 
# Load a specific experiment 
# It takes two arguments: the name of the dataset and the name of the experiment to load. 
adata = sodb.load_experiment(dataset_name,experiment_name) 
 
Then, save an H5AD file format with the filename 'keren2018a_p9.h5ad' by entering the 
following command: 
 
adata.write_h5ad('keren2018a_p9.h5ad') 
 
6. Perform Sepal to spatially variable gene detection for spatial proteomics data 
First, create an instance of the 'RawData' class with the input file 'keren2018a_p9.h5ad', and 
enter the following command: 
 
raw_data = d.RawData('keren2018a_p9.h5ad') 
 
Next, create an instance of the 'UnstructuredData' class. This class is a specialized subclass of the 
'CountData' class in Sepal, designed specifically for processing data that is neither Visium nor ST 
type, enter the following command: 
 
data = m.UnstructuredData(raw_data, eps = 0.1) 
 
The 'propagate' function models diffusion on spatial proteomics data normalizes and scales it, 
and stores the scaled diffusion times in a data frame called 'times': 
 
times = m.propagate(data, normalize = True, scale =True) 
 
Afterward, choose the profiles with the highest and lowest diffusion times, consisting of the top 
10 and bottom 10 profiles, respectively, and execute the following commands: 
 
# Selects the top 10 and bottom 10 profiles based on their diffusion times 
# Set the number of top and bottom profiles to be selected as 10 
n_top = 10 
# Computes the indices that would sort the times DataFrame in ascending order 
sorted_indices = np.argsort(times.values.flatten()) 
# Reverses the order of the sorted indices to obtain a descending order 
sorted_indices = sorted_indices[::-1] 
# Retrieves the profile names corresponding to the sorted indices 
sorted_profiles = times.index.values[sorted_indices] 
# Select the top 10 profile names with the highest diffusion times 
top_profiles = sorted_profiles[0:n_top] 
# Selects the bottom 10 profile names with the lowest diffusion times 
tail_profiles = sorted_profiles[-n_top:] 



# Retrieves the top 10 profiles from the times DataFrame 
times.loc[top_profiles,:] 
 
Similarly, create a dictionary called 'pltargs' and use it to call the 'plot_profiles' function twice, 
with different parameters for 'tail_profiles' and 'top_profiles,' in order to generate two separate 
visualizations of the top and bottom spatial proteomics profiles. Execute the following commands 
sequentially: 
 
# Inspect detecition visually by using the "plot_profiles function for first 10 SVG 
# Define a custom pltargs dictionary with plot style options 
pltargs = dict(s = 15, cmap = "magma", edgecolor = 'none', marker = 'H', ) 
# plot the profiles 
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,top_profiles], crd = data.real_crd, rank_values = 
times.loc[top_profiles,:].values.flatten(), pltargs = pltargs, ) 
# See Supplementary Fig. 2f (left) 
 
# Inspect detecition visually by using the "plot_profiles function for last 10 SVG 
# Define a custom pltargs dictionary with plot style options 
pltargs = dict(s = 15, cmap = "magma", edgecolor = 'none', marker = 'H', ) 
# plot the profiles 
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,tail_profiles], crd = data.real_crd, rank_values = 
times.loc[tail_profiles,:].values.flatten(), pltargs = pltargs, ) 
# See Supplementary Fig. 2f (right) 

Spatially variable analysis for Spatial metabolomics data (Timing ~ 20 

min) 

This section exemplifies the use of Pysodb and Sepal for identifying spatially variable features, 
leveraging new spatial metabolomics data sourced from wheat seed via MALDI. 
 
7. Import packages and set configurations, enter the following commands: 
 
import numpy as np 
# Import sepal package and its modules 
import sepal.datasets as d 
import sepal.models as m 
import sepal.utils as ut 
 
8. Import, initialize, and load data using Pysodb: 
 
# Import pysodb package 
import pysodb 



# Initialization 
sodb = pysodb.SODB() 
 
# Define names of the dataset_name and experiment_name 
dataset_name = 'MALDI_seed' 
experiment_name = 'S655_WS22_320x200_15um_E110' 
# Load a specific experiment 
# It takes two arguments: the name of the dataset and the name of the experiment to load. 
adata = sodb.load_experiment(dataset_name,experiment_name) 
 
Subsequently, store an AnnData object in the H5AD file format under the filename 
'S655_WS22_320x200_15um_E110.h5ad' by executing the following command: 
 
adata.write_h5ad('S655_WS22_320x200_15um_E110.h5ad') 
 
9. Perform Sepal to spatially variable gene detection for spatial metabolomics data 
First, create an instance of the 'RawData' class with the input file 
'S655_WS22_320x200_15um_E110.h5ad,' enter the following command: 
 
raw_data = d.RawData('S655_WS22_320x200_15um_E110.h5ad') 
 
Next, create an instance of the 'UnstructuredData' class, which is a subclass of the 'CountData' 
class in Sepal, specifically designed to handle non-Visium or non-ST data by entering the 
following command: 
 
data = m.UnstructuredData(raw_data, eps = 0.1) 
 
The 'propagate' function simulates diffusion on spatial metabolomics data, conducts 
normalization and scaling procedures, and subsequently records the scaled diffusion times for 
each profile into a data frame called 'times.' These diffusion times symbolize the rate at which 
gene expression levels spread spatially throughout the diffusion process. 
 
times = m.propagate(data, normalize = True, scale =True) 
 
Next, select the top 10 and bottom 10 profiles based on their diffusion times, enter the following 
commands: 
 
# Selects the top 10 and bottom 10 profiles based on their diffusion times 
# Set the number of top and bottom profiles to be selected as 10 
n_top = 10 
# Computes the indices that would sort the times DataFrame in ascending order 
sorted_indices = np.argsort(times.values.flatten()) 
# Reverses the order of the sorted indices to obtain a descending order 
sorted_indices = sorted_indices[::-1] 



# Retrieves the profile names corresponding to the sorted indices 
sorted_profiles = times.index.values[sorted_indices] 
# Select the top 10 profile names with the highest diffusion times 
top_profiles = sorted_profiles[0:n_top] 
# Selects the bottom 10 profile names with the lowest diffusion times 
tail_profiles = sorted_profiles[-n_top:] 
# Retrieves the top 10 profiles from the times DataFrame 
times.loc[top_profiles,:] 
 
Generate two separate visualizations of the top and bottom spatial metabolomics profiles. 
Execute the following commands sequentially: 
 
# Inspect detecition visually by using the "plot_profiles function for first 10 SVG 
# Define a custom pltargs dictionary with plot style options 
pltargs = dict(s = 3, cmap = "magma", edgecolor = 'none', marker = 'H', ) 
# plot the profiles 
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,top_profiles], crd = data.real_crd, rank_values = 
times.loc[top_profiles,:].values.flatten(), pltargs = pltargs, ) 
# See Supplementary Fig. 2i (left) 
 
# Inspect detecition visually by using the "plot_profiles function for last 10 SVG 
# Define a custom pltargs dictionary with plot style options 
pltargs = dict(s = 3, cmap = "magma", edgecolor = 'none', marker = 'H', ) 
# plot the profiles 
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,tail_profiles], crd = data.real_crd, rank_values = 
times.loc[tail_profiles,:].values.flatten(), pltargs = pltargs, ) 
# See Supplementary Fig. 2i (right) 

Spatially variable analysis for Spatial multiomics Data (Timing ~ 1 min) 

This section showcases the utilization of Pysodb and Sepal to discern spatially variable features, 
drawing upon spatial multi-omics data derived from a mouse embryo through DBiT-Seq. 
 
10. Import packages and set configurations, enter the following commands: 
 
import numpy as np 
# Import sepal package and its modules 
import sepal.datasets as d 
import sepal.models as m 
import sepal.utils as ut 
 
11. Import, initialize, and load data using Pysodb: 
 



# Import pysodb package 
import pysodb 
# Initialization 
sodb = pysodb.SODB() 
 
# Define names of the dataset_name and experiment_name 
dataset_name = 'liu2020high' 
experiment_name = 'E10_whole_gene_best' 
# Load a specific experiment 
# It takes two arguments: the name of the dataset and the name of the experiment to load. 
adata = sodb.load_experiment(dataset_name,experiment_name) 
 
Next, save an H5AD file format with the filename 'E10_whole_gene_best.h5ad' by entering the 
following command: 
 
adata.write_h5ad('E10_whole_gene_best.h5ad') 
 
12. Perform Sepal to spatially variable gene detection for spatial multiomics data 
Firstly, create an instance of the 'RawData' class with the input file 'E10_whole_gene_best.h5ad', 
and enter the following command: 
 
raw_data = d.RawData('E10_whole_gene_best.h5ad') 
 
To enhance the quality of the count matrix in the 'raw_data' object, utilize the 'filter_genes' 
function to eliminate genes that are irrelevant or of low quality selectively, enter the following 
command: 
 
raw_data.cnt = ut.filter_genes(raw_data.cnt, min_expr=10, min_occur=5) 
 
Next, initiate an instance of the 'UnstructuredData' class. This class, a subclass of the 'CountData' 
class in Sepal, is specifically tailored to process data that does not conform to Visium or ST type. 
Proceed by entering the following command: 
 
data = m.UnstructuredData(raw_data, eps = 0.1) 
 
The 'propagate' function simulates the process of diffusion on spatial multiomics data, executes 
normalization and scaling, and subsequently saves the scaled diffusion times in a data frame 
referred to as 'times': 
 
times = m.propagate(data, normalize = True, scale =True) 
 
Afterward, choose the profiles with the highest and lowest diffusion times, consisting of the top 
10 and bottom 10 profiles, respectively, and run the following commands: 
 



# Selects the top 10 and bottom 20 profiles based on their diffusion times 
# Set the number of top and bottom profiles to be selected as 10 
n_top = 10 
# Computes the indices that would sort the times DataFrame in ascending order 
sorted_indices = np.argsort(times.values.flatten()) 
# Reverses the order of the sorted indices to obtain a descending order 
sorted_indices = sorted_indices[::-1] 
# Retrieves the profile names corresponding to the sorted indices 
sorted_profiles = times.index.values[sorted_indices] 
# Select the top 10 profile names with the highest diffusion times 
top_profiles = sorted_profiles[0:n_top] 
# Selects the bottom 10 profile names with the lowest diffusion times 
tail_profiles = sorted_profiles[-n_top:] 
# Retrieves the top 10 profiles from the times DataFrame 
times.loc[top_profiles,:] 
 
Create separate visualizations of the top and low spatial multiomics profiles. Execute the 
following commands in turn:  
 
# Inspect detecition visually by using the "plot_profiles function for first 10 SVG 
# Define a custom pltargs dictionary with plot style options 
pltargs = dict(s = 25, cmap = "magma", edgecolor = 'none', marker = 'H', ) 
# plot the profiles 
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,top_profiles], crd = data.real_crd, rank_values = 
times.loc[top_profiles,:].values.flatten(), pltargs = pltargs, ) 
# See Supplementary Fig. 2l (left) 
 
# Inspect detecition visually by using the "plot_profiles function for last 10 SVG 
# Define a custom pltargs dictionary with plot style options 
pltargs = dict(s = 25, cmap = "magma", edgecolor = 'none', marker = 'H', ) 
# plot the profiles 
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,tail_profiles], crd = data.real_crd, rank_values = 
times.loc[tail_profiles,:].values.flatten(), pltargs = pltargs, ) 
# See Supplementary Fig. 2l (right) 

Spatial clustering for Spatial genomics data (Timing ~ 1~2 min) 

This section highlights the application of Pysodb and SpaceFlow in identifying spatial clustering, 
employing novel spatial genomics data procured from a mouse cerebellum through 
Slide-DNA-Seq. 
 
13. Import packages and set configurations, enter the following commands: 
 



import scanpy as sc 
# from SpaceFlow package import SpaceFlow module 
from SpaceFlow import SpaceFlow 
 
import palettable 
cmp_pspace = palettable.cartocolors.diverging.TealRose_7.mpl_colormap 
cmp_domain = palettable.cartocolors.qualitative.Pastel_10.mpl_colors 
cmp_ct = palettable.cartocolors.qualitative.Safe_10.mpl_colors 
 
CRITICAL: The Palettable package can be imported to access a wide range of color palettes and 
colormap generators suitable for data visualization. 
 
14. Import, initialize, and load data using Pysodb: 
 
# Import pysodb package 
import pysodb 
# Initialize the sodb object 
sodb = pysodb.SODB() 
 
# Define names of the dataset_name and experiment_name 
dataset_name = 'zhao2022spatial' 
experiment_name = 'mouse_cerebellum_1_dna_200114_14' 
# Load a specific experiment 
# It takes two arguments: the name of the dataset and the name of the experiment to load. 
adata = sodb.load_experiment(dataset_name,experiment_name) 
 
15. Perform SpaceFlow to spatial clustering for spatial genomics data 
To analyze spatial genomics data, a 'SpaceFlow' object must first be created. This object takes in 
expression count data, spatial location coordinates, sample names, and feature names from an 
AnnData object called 'adata' as input. To create the 'SpaceFlow' object, enter the following 
commands: 
 
sf = SpaceFlow.SpaceFlow( 
    count_matrix=adata.X,  
    spatial_locs=adata.obsm['spatial'],  
    sample_names=adata.obs_names,  
    gene_names=adata.var_names 
) 
 
After creating the 'SpaceFlow' object, the next step involves preprocessing the spatial genomics 
data, and enter the following command: 
 
sf.preprocessing_data() 
 



CRITICAL: When dealing with anndata (adata) where the count or expression matrix is extremely 
sparse, or where there are a very limited number of features, it may be preferable to forego data 
preprocessing. This is because over-processing in these instances could lead to errors or 
diminished performance in downstream tasks. To skip preprocessing, user will need to make 
modifications to the preprocessing_data function within the "SpaceFlow.py" file of the SpaceFlow 
package. Specifically, user should comment out the sc.pp.normalize_total(), sc.pp.log1p(), and 
sc.pp.highly_variable_genes() functions. 
 
Following the above preprocessing step, train a SpaceFlow model and return the embedding by 
entering the following command: 
 
embedding = sf.train( 
    spatial_regularization_strength=0.1,  
    z_dim=50,  
    lr=1e-3,  
    epochs=1000,  
    max_patience=50,  
    min_stop=100,  
    random_seed=42,  
    gpu=0,  
    regularization_acceleration=True,  
    edge_subset_sz=1000000 
) 
 
Then, save the embeddings of the trained SpaceFlow model to adata.obsm['SpaceFlow'], enter 
the following command: 
 
adata.obsm['SpaceFlow'] = embedding 
 
Subsequently, compute neighborhood graph utilizing the 'SpaceFlow' representation, conduct 
dimensionality reduction using the UMAP algorithm, and apply clustering to the representation 
employing the Leiden algorithm, enter the following commands: 
 
sc.pp.neighbors(adata, use_rep= 'SpaceFlow') 
sc.tl.umap(adata) 
sc.tl.leiden(adata, resolution= 0.3) 
 
Next, generate a plot of the UMAP embedding colored by 'leiden,' enter the following command: 
 
sc.pl.umap(adata, color= 'leiden', color_map= cmp_pspace) 
# See Supplementary Fig. 3c (left) 
 
Last, display a spatial embedding plot with clustering information, enter the following commands: 
 



ax = sc.pl.embedding(adata, basis= 'spatial', color= 'leiden', show=False, color_map=cmp_pspace) 
ax.axis('equal') 
# See Supplementary Fig. 3c (right) 

Spatial clustering for Spatial proteomics data (Timing ~ 0.5 min) 

This section presents the application of Pysodb and SpaceFlow in identifying spatial clustering, 
employing novel spatial proteomics data procured from a human triple negative breast cancer 
through MIBI-TOF.    
 
16. Import packages and set configurations, enter the following commands: 
 
import scanpy as sc 
# from SpaceFlow package import SpaceFlow module 
from SpaceFlow import SpaceFlow 
 
import palettable 
cmp_pspace = palettable.cartocolors.diverging.TealRose_7.mpl_colormap 
cmp_domain = palettable.cartocolors.qualitative.Pastel_10.mpl_colors 
cmp_ct = palettable.cartocolors.qualitative.Safe_10.mpl_colors 
 
17. Import, initialize, and load data using Pysodb: 
 
# Import pysodb package 
import pysodb 
# Initialize the sodb object 
sodb = pysodb.SODB() 
 
# Define names of the dataset_name and experiment_name 
dataset_name = 'keren2018a' 
experiment_name = 'p4' 
# Load a specific experiment 
# It takes two arguments: the name of the dataset and the name of the experiment to load. 
adata = sodb.load_experiment(dataset_name,experiment_name) 
 
18. Perform SpaceFlow to spatial clustering for spatial proteomics data 
To generate a 'SpaceFlow' object for spatial clustering, input expression count data, spatial 
location coordinates, sample names, and feature names from an AnnData object called 'adata' by 
executing the subsequent command: 
 
sf = SpaceFlow.SpaceFlow( 
    count_matrix=adata.X,  
    spatial_locs=adata.obsm['spatial'],  



    sample_names=adata.obs_names,  
    gene_names=adata.var_names 
) 
 
Upon creating the 'SpaceFlow' object, the next step entails preprocessing the spatial proteomics 
data. The following command should be entered: 
 
sf.preprocessing_data() 
 
CRITICAL: In situations where anndata (adata) is characterized by an extremely sparse count or 
expression matrix, or when dealing with limited-feature data such as spatial proteomics, it might 
be more beneficial to omit data preprocessing. Over-processing in these cases could potentially 
result in errors or impede performance in subsequent tasks. In order to bypass preprocessing, 
modifications must be made to the preprocessing_data function located in the "SpaceFlow.py" 
file, which is a part of the SpaceFlow package. Specifically, users should deactivate the 
sc.pp.normalize_total(), sc.pp.log1p(), and sc.pp.highly_variable_genes() functions by 
commenting them out. 
After the preprocessing step has been completed, the user can proceed to train a SpaceFlow 
model by executing the following command: 
 
embedding = sf.train( 
    spatial_regularization_strength=0.1,  
    z_dim=50,  
    lr=1e-3,  
    epochs=1000,  
    max_patience=50,  
    min_stop=100,  
    random_seed=42,  
    gpu=0,  
    regularization_acceleration=True,  
    edge_subset_sz=1000000 
) 
 
Next, store the embeddings of the trained SpaceFlow model in the adata.obsm['SpaceFlow']: 
 
adata.obsm['SpaceFlow'] = embedding 
 
Next, calculate the neighborhood graph of cells using 'SpaceFlow' representation, perform UMAP 
dimensionality reduction, and cluster the representation using the leiden algorithm, enter the 
following commands:  
 
sc.pp.neighbors(adata, use_rep= 'SpaceFlow') 
sc.tl.umap(adata) 
sc.tl.leiden(adata, resolution=0.05) 



 
Next, visualize a UMAP embedding, enter the following commands:  
 
sc.pl.umap(adata, color= 'leiden', color_map= cmp_pspace) 
# See Supplementary Fig. 3f (left) 
 
Last, visualize a spatial embedding with clustering information, enter the following commands: 
 
ax = sc.pl.embedding(adata, basis= 'spatial', color='leiden', show= False, color_map=cmp_pspace) 
ax.axis('equal') 
# See Supplementary Fig. 3f (right) 

Spatial clustering for Spatial metabolomics data (Timing ~ 2 min) 

This section demonstrates the use of Pysodb and SpaceFlow to detect spatial clustering, using 
innovative spatial metabolomics data derived from a wheat seed via MALDI.    
 
19. Import packages and set configurations, enter the following commands: 
 
import scanpy as sc 
# from SpaceFlow package import SpaceFlow module 
from SpaceFlow import SpaceFlow 
 
import palettable 
cmp_pspace = palettable.cartocolors.diverging.TealRose_7.mpl_colormap 
cmp_domain = palettable.cartocolors.qualitative.Pastel_10.mpl_colors 
cmp_ct = palettable.cartocolors.qualitative.Safe_10.mpl_colors 
 
20. Import, initialize, and load data using Pysodb: 
 
# Import pysodb package 
import pysodb 
# Initialize the sodb object 
sodb = pysodb.SODB() 
 
# Define names of the dataset_name and experiment_name 
dataset_name = 'MALDI_seed' 
experiment_name = 'S655_WS22_320x200_15um_E110' 
# Load a specific experiment 
# It takes two arguments: the name of the dataset and the name of the experiment to load. 
adata = sodb.load_experiment(dataset_name,experiment_name) 
 
21. Perform SpaceFlow to spatial clustering for spatial metabolomics data 



In order to construct a 'SpaceFlow' object for the analysis of spatial metabolomics data, users can 
supply expression count data, spatial location coordinates, sample names, and feature names 
from an AnnData object, execute the following command: 
 
sf = SpaceFlow.SpaceFlow( 
    count_matrix=adata.X,  
    spatial_locs=adata.obsm['spatial'],  
    sample_names=adata.obs_names,  
    gene_names=adata.var_names 
) 
 
After the SpaceFlow object is successfully created, the next step involves preprocessing the 
spatial metabolomics data, execute the following command: 
 
sf.preprocessing_data() 
 
Upon the completion of the preprocessing stage, move forward to train the SpaceFlow model 
and return the embedding by executing the following command: 
 
embedding = sf.train( 
    spatial_regularization_strength=0.1,  
    z_dim=50,  
    lr=1e-3,  
    epochs=1000,  
    max_patience=50,  
    min_stop=100,  
    random_seed=42,  
    gpu=0,  
    regularization_acceleration=True,  
    edge_subset_sz=1000000 
) 
 
Next, store the embeddings generated by the trained SpaceFlow model into 
'adata.obsm['SpaceFlow']': 
 
adata.obsm['SpaceFlow'] = embedding 
 
The following steps include computing the neighborhood graph of cells employing the 
'SpaceFlow' representation, performing UMAP dimensionality reduction, and clustering the 
representation with the 'leiden' algorithm, run the following commands: 
 
sc.pp.neighbors(adata, use_rep= 'SpaceFlow') 
sc.tl.umap(adata) 
sc.tl.leiden(adata, resolution=0.04) 



 
Next, generate a plot of the UMAP embedding colored by 'leiden', execute the following 
command: 
 
sc.pl.umap(adata, color= 'leiden', color_map= cmp_pspace) 
# See Supplementary Fig. 3i (left) 
 
Finally, a spatial embedding can be visualized with 'leiden' color-coding and equal axis scaling, 
enter the following commands: 
 
ax = sc.pl.embedding(adata, basis= 'spatial', color='leiden', show= False, color_map=cmp_pspace) 
ax.axis('equal') 
# See Supplementary Fig. 3i (right) 

Spatial data integration for Spatial proteomics data (Timing ~ 1~2 min) 

This section illustrates the application of Pysodb, STAGATE, and Harmony for the integration of 
spatial proteomics data obtained from a human triple-negative breast cancer sample using 
MIBI-TOF.   
 
22. Import packages and set configurations, enter the following commands: 
 
import pandas as pd 
import scanpy as sc 
import matplotlib.pyplot as plt 
import STAGATE_pyG as STAGATE 
import harmonypy as hm 
 
import palettable 
cmp_old = palettable.cartocolors.qualitative.Bold_10.mpl_colors 
cmp_old_biotech = palettable.cartocolors.qualitative.Safe_4.mpl_colors 
 
23. Import, initialize, and load data using Pysodb: 
 
Firstly, a Pysodb package is imported and initialized by creating a 'SODB' object and enter the 
following commands: 
 
import pysodb 
sodb = pysodb.SODB() 
 
Proceed to load the first spatial proteomics dataset using Pysodb: 
 
dataset_name = 'keren2018a' 



experiment_name = 'p4' 
adata = sodb.load_experiment(dataset_name,experiment_name) 
 
Create a dictionary named 'adata_list,' modify the names in the 'adata' object by appending '_p4', 
and save a copy of the modified 'adata' object in the dictionary with the key 'p4'. Execute the 
following commands: 
 
adata_list = {}  
adata.obs_names = [x+'_p4' for x in adata.obs_names] 
adata_list['p4'] = adata.copy() 
 
Continuing further, load the second spatial proteomics dataset with Pysodb: 
 
dataset_name = 'keren2018a' 
experiment_name = 'p9' 
adata = sodb.load_experiment(dataset_name,experiment_name) 
 
Similarly, update names in another 'adata' object by adding '_p9,' and save a copy of the 
modified object in the 'adata_list' dictionary under the key 'p9,' execute the following 
commands: 
 
adata.obs_names = [x+'_p9' for x in adata.obs_names] 
adata_list['p9'] = adata.copy() 
 
24. Running STAGATE for training 
 
Firstly, construct spatial neighbor networks and calculate statistics for 'adata_list['p4']' and 
'adata_list['p9']' by executing the following commands: 
 
STAGATE.Cal_Spatial_Net(adata_list['p4'], rad_cutoff=50) 
STAGATE.Stats_Spatial_Net(adata_list['p4']) 
 
STAGATE.Cal_Spatial_Net(adata_list['p9'], rad_cutoff=50) 
STAGATE.Stats_Spatial_Net(adata_list['p9']) 
 
Next, train the STAGATE model on each individual sample in the adata_list, execute the following 
command: 
 
for section_id in ['p4', 'p9']: 

adata_list[section_id] = STAGATE.train_STAGATE(adata_list[section_id],n_epochs=500) 
 
Then, concatenate an 'adata' object stored in the 'adata_list' dictionary with the keys 'p4' and 
'p9,' enter the following command: 
 



adata = sc.concat([adata_list['p4'], adata_list['p9']], keys=None) 
 
Calculates neighbors in the 'STAGATE' representation, applies UMAP, and performs leiden 
clustering ,enter the following commands: 
 
sc.pp.neighbors(adata, use_rep='STAGATE') 
sc.tl.umap(adata) 
sc.tl.leiden(adata,resolution=0.08) 
 
Save UMAP and Leiden clustering results before integration and delete the STAGATE embedding 
from each individual sample ,enter the following commands: 
 
adata.obsm['UMAP_before'] = adata.obsm['X_umap'] 
adata.obs['leiden_before'] = adata.obs['leiden'] 
del adata.obsm['STAGATE'] 
 
Combine their 'Spatial_Net,' and summarize cells and edges information for the whole adata, 
enter the following commands:  
 
adata.uns['Spatial_Net'] = pd.concat([adata_list['p4'].uns['Spatial_Net'], 
adata_list['p9'].uns['Spatial_Net']]) 
STAGATE.Stats_Spatial_Net(adata) 
 
In the subsequent step, train a STAGATE model on the whole samples by executing the following 
command: 
 
adata = STAGATE.train_STAGATE(adata, n_epochs=500) 
 
Next, create a new column 'Sample' by splitting each name and selecting the last element: 
 
adata.obs['Sample'] = [x.split('_')[-1] for x in adata.obs_names] 
 
Immediately following, visualize the UMAP projection (across different samples) , UMAP 
embedding (for spatial clustering), and spatial distribution (for spatial clustering) before 
integration, execute the following commands: 
 
# Plot a UMAP projection across different samples before integration 
plt.rcParams["figure.figsize"] = (3, 3) 
sc.pl.embedding(adata, basis= 'UMAP_before', color='Sample', 
title='Unintegrated',show=False,palette=cmp_old_biotech) 
 
# Generate a plot of the UMAP embedding colored by leiden before integration 
plt.rcParams["figure.figsize"] = (3, 3) 
sc.pl.embedding(adata, basis= 'UMAP_before', 



color='leiden_before',show=False,palette=cmp_old) 
 
# Display spatial distribution of cells colored by leiden clustering for two samples ('p4' and 'p9') 
fig, axs = plt.subplots(1, 2, figsize=(6, 3)) 
it=0 
for temp_tech in ['p4', 'p9']: 
    temp_adata = adata[adata.obs['Sample']==temp_tech, ] 
    if it == 1: 
        ax = sc.pl.embedding(temp_adata, basis="spatial", color="leiden_before",s=6, 
ax=axs[it], 
                        show=False, title=temp_tech) 
        ax.axis('equal') 
    else: 
        ax = sc.pl.embedding(temp_adata, basis="spatial", color="leiden_before",s=6, 
ax=axs[it], legend_loc=None, 
                        show=False, title=temp_tech) 
        ax.axis('equal') 

it+=1 
# See Supplementary Fig. 4c (middle) 
 
25. Perform Harmony for spatial data intergration 
 
After obtaining the 'STAGATE' representation in the aforementioned steps, a 'run_harmony' 
function is utilized to integrate spatial data. The Harmony algorithm identifies shared structures 
across different batches and aligns them in a common space. Enter the following commands: 
 
data_mat = adata.obsm['STAGATE'].copy() 
meta_data = adata.obs.copy() 
ho = hm.run_harmony(data_mat, meta_data, ['Sample']) 
 
Post-process the Harmony output to prepare the data for downstream analysis. It involves 
creating a Pandas data frame with the correlation matrix of the Harmony-corrected data, 
assigning sample names to the data frame, mapping spatial coordinates to the 
Harmony-corrected data, and adding a 'Sample' column to the metadata by mapping the 
'Sample' information from the original dataset. Execute the following commands: 
 
res = pd.DataFrame(ho.Z_corr) 
res.columns = adata.obs_names 
adata_Harmony = sc.AnnData(res.T) 
adata_Harmony.obsm['spatial'] = pd.DataFrame(adata.obsm['spatial'], 
index=adata.obs_names).loc[adata_Harmony.obs_names,].values 
adata_Harmony.obs['Sample'] = adata.obs.loc[adata_Harmony.obs_names, 'Sample'] 
 
Create UMAP and spatial embedding plots with 'leiden' clustering after integration by executing 



the following commands: 
 
sc.pp.neighbors(adata_Harmony) 
sc.tl.umap(adata_Harmony) 
sc.tl.leiden(adata_Harmony, resolution=0.08) 
 
Next, save UMAP and Leiden clustering results after integration, enter the following commands: 
 
adata.obsm['UMAP_after'] = adata_Harmony.obsm['X_umap'] 
adata.obs['leiden_after'] = adata_Harmony.obs['leiden'] 
 
Lastly, visualize the UMAP projection (across different samples), UMAP embedding (for spatial 
clustering), and spatial distribution (for spatial clustering) after the integration process, execute 
the following commands: 
 
# Plot a UMAP projection different samples after integration 
plt.rcParams["figure.figsize"] = (3, 3) 
sc.pl.embedding(adata, basis= 'UMAP_after', color='Sample', title='STAGATE + 
Harmony',show=False, palette=cmp_old_biotech) 
 
# Generate a plot of the UMAP embedding colored by leiden after integration 
plt.rcParams["figure.figsize"] = (3, 3) 
sc.pl.embedding(adata, basis= 'UMAP_after', color='leiden_after', show=False, palette=cmp_old) 
 
# Display spatial distribution of cells colored by leiden clustering for two samples ('p4' and 'p9') 
after integration 
fig, axs = plt.subplots(1, 2, figsize=(6, 3)) 
it=0 
for temp_tech in ['p4', 'p9']: 
    temp_adata = adata[adata.obs['Sample']==temp_tech, ] 
    if it == 1: 
        ax = sc.pl.embedding(temp_adata, basis="spatial", color="leiden_after",s=6, ax=axs[it], 
                        show=False, title=temp_tech) 
        ax.axis('equal') 
    else: 
        ax = sc.pl.embedding(temp_adata, basis="spatial", color="leiden_after",s=6, ax=axs[it], 
legend_loc=None, 
                        show=False, title=temp_tech) 
        ax.axis('equal') 

it+=1 
# See Supplementary Fig. 4c (right) 



Spatial data integration for Spatial proteomics data2 (Timing ~ 11~12 

min) 

This section showcases the use of Pysodb, STAGATE, and Harmony in the integration of additional 
spatial proteomics data, specifically data gathered from a cell line using Iterative Indirect 
Immunofluorescence Imaging. 
 
26. Import packages and set configurations, enter the following commands: 
 
import pandas as pd 
import scanpy as sc 
import matplotlib.pyplot as plt 
import STAGATE_pyG as STAGATE 
import harmonypy as hm 
 
import palettable 
cmp_old = palettable.cartocolors.qualitative.Bold_10.mpl_colors 
cmp_old_biotech = palettable.cartocolors.qualitative.Safe_4.mpl_colors 
 
27. Import, initialize, and load data using Pysodb: 
 
import pysodb 
sodb = pysodb.SODB() 
 
Then define a section_list with samples from different experiments and load the experiments, 
enter the following commands: 
 
section_list = ['cell_129', 'cell_143', 'cell_140', 'cell_127'] 
 
dataset_name = 'gut2018multiplexed' 
adata_list = {} 
for section_id in section_list: 
    temp_adata = sodb.load_experiment(dataset_name,section_id) 
    temp_adata.var_names_make_unique() 
    temp_adata.obs_names = [x+'_'+section_id for x in temp_adata.obs_names] 

adata_list[section_id] = temp_adata.copy() 
 

Then, visualize different experiments color by 'cluster', enter the following commands: 
 
fig, axs = plt.subplots(1, 4, figsize=(12, 3)) 
it=0 
for section_id in section_list: 



    if it == 3: 
        ax = sc.pl.embedding(adata_list[section_id], basis= 'spatial', ax=axs[it], 
                      color=['cluster'], title=section_id, show=False) 
        ax.axis('equal') 
    else: 
        ax = sc.pl.embedding(adata_list[section_id], basis= 'spatial', ax=axs[it],  
                      color=['cluster'], title=section_id, show=False) 
        ax.axis('equal') 

it+=1 
 
28. Running STAGATE for training 
To begin, spatial neighbor networks should be constructed and statistics calculated separately for 
different samples in the 'adata_list,' execute the following command: 
 
for section_id in section_list: 
    STAGATE.Cal_Spatial_Net(adata_list[section_id], rad_cutoff=3) 

STAGATE.Stats_Spatial_Net(adata_list[section_id]) 
 

Next, proceed to train the STAGATE model on each individual sample present in the 'adata_list', 
run the following command: 
 
for section_id in section_list: 

adata_list[section_id] = STAGATE.train_STAGATE(adata_list[section_id],n_epochs= 1500) 
 

Next, Concatenate each individual sample in the adata_list into a AnnData object named 
'adata_before', execute the following command:   
 
adata_before = sc.concat([adata_list[x] for x in section_list], keys=None) 
 
Calculate the nearest neighbors in the 'STAGATE' representation and computes the UMAP 
embedding, and use Mclust_R to cluster cells in the 'STAGATE' representation into 10 clusters, 
execute the following commands:  
  
sc.pp.neighbors(adata_before, use_rep='STAGATE') 
sc.tl.umap(adata_before) 
adata_before = STAGATE.mclust_R(adata_before, used_obsm='STAGATE', num_cluster=10) 
adata_before.obs['mclust10_before'] = adata_before.obs['mclust'] 
 
Next, concatenate each individual sample in the adata_list into another new AnnData object 
named 'adata' by executing the following command:  
 
adata = sc.concat([adata_list[x] for x in section_list], keys=None) 
 
Save UMAP and mclust clustering results before integration and delete the STAGATE embedding 



from each individual sample ,enter the following commands: 
 
adata.obsm['UMAP_before'] = adata_before.obsm['X_umap'] 
adata.obs['mclust10_before'] = adata_before.obs['mclust10_before'] 
del adata.obsm['STAGATE'] 
 
To amalgamate their 'Spatial_Net' and summarize cells and edges information for the entire 
'adata', execute the following commands: 
 
adata.uns['Spatial_Net'] = pd.concat([adata_list[x].uns['Spatial_Net'] for x in section_list]) 
STAGATE.Stats_Spatial_Net(adata) 
 
In the next step, train a STAGATE model on all samples collectively by running the following 
command: 
 
adata = STAGATE.train_STAGATE(adata, n_epochs= 1500) 
 
Construct a new 'Sample' column by dividing each name and selecting the last two elements, 
execute the following command: 
 
adata.obs['Sample'] = [x.split('_')[-2] + '_' + x.split('_')[-1] for x in adata.obs_names] 
 
Next, visualize the UMAP projection (across different samples), UMAP embedding (for spatial 
clustering), and spatial distribution (for spatial clustering) before the integration, run the 
following commands: 
 
# Plot a UMAP projection before integration 
plt.rcParams["figure.figsize"] = (3, 3) 
sc.pl.embedding(adata, basis= 'UMAP_before', color='Sample', title='Unintegrated',show=False, 
palette=cmp_old_biotech) 
 
# Generate a plot of the UMAP embedding colored by mclust before integration 
plt.rcParams["figure.figsize"] = (3, 3) 
sc.pl.embedding(adata, basis= 'UMAP_before', color='mclust10_before', show=False, 
palette=cmp_old) 
 
# Display spatial distribution of cells colored by mclust clustering for four samples 
fig, axs = plt.subplots(1, 4, figsize=(12, 3)) 
it=0 
for section_id in section_list: 
    ax = sc.pl.embedding(adata[adata.obs['Sample']==section_id], basis= 'spatial', ax=axs[it], 
                      color=['mclust10_before'], title=section_id, show=False) 
    ax.axis('equal') 

it+=1 



# See Supplementary Fig. 4f (middle) 
 
29. Perform Harmony for spatial data intergration 
Upon obtaining the 'STAGATE' representation from the previous steps, the 'run_harmony' 
function is employed to integrate the spatial data. The Harmony algorithm detects shared 
structures across different batches and aligns them within a unified space, execute the following 
commands: 
 
data_mat = adata.obsm['STAGATE'].copy() 
meta_data = adata.obs.copy() 
ho = hm.run_harmony(data_mat, meta_data, ['Sample']) 
 
Post-process the Harmony output to ready the data for subsequent analysis. This involves 
constructing a Pandas data frame from the correlation matrix of the Harmony-corrected data, 
assigning sample names to the data frame, mapping spatial coordinates to the 
Harmony-corrected data, and appending a 'Sample' column to the metadata by mapping the 
'Sample' information from the original dataset, run the following commands: 
 
res = pd.DataFrame(ho.Z_corr) 
res.columns = adata.obs_names 
adata_Harmony = sc.AnnData(res.T) 
adata_Harmony.obsm['spatial'] = pd.DataFrame(adata.obsm['spatial'], 
index=adata.obs_names).loc[adata_Harmony.obs_names,].values 
adata_Harmony.obs['Sample'] = adata.obs.loc[adata_Harmony.obs_names, 'Sample'] 
 
Calculate the nearest neighbors and generate the UMAP embedding for the integrated data. 
Subsequently, apply Mclust_R to cluster the 'Harmony' representation into four clusters, input 
the following commands: 
 
sc.pp.neighbors(adata_Harmony) 
sc.tl.umap(adata_Harmony) 
adata_Harmony.obsm['Harmony'] = adata_Harmony.X 
adata_Harmony = STAGATE.mclust_R(adata_Harmony, used_obsm='Harmony', num_cluster=4) 
adata_Harmony.obs['mclust4_after'] = adata_Harmony.obs['mclust'] 
 
Next, save UMAP and mclust clustering results after integration, enter the following commands: 
 
adata.obsm['UMAP_after'] = adata_Harmony.obsm['X_umap'] 
adata.obs['mclust4_after'] = adata_Harmony.obs['mclust4_after'] 
 
Lastly, visualize the UMAP projection (across different samples), UMAP embedding (for spatial 
clustering), and spatial distribution (for spatial clustering) after the integration, execute the 
following commands: 
 



# Plot a UMAP projection different samples after integration 
plt.rcParams["figure.figsize"] = (3, 3) 
sc.pl.embedding(adata, basis= 'UMAP_after', color='Sample', title='STAGATE + 
Harmony',show=False, palette=cmp_old_biotech) 
 
# Generate a plot of the UMAP embedding colored by mclust after integration 
plt.rcParams["figure.figsize"] = (3, 3) 
sc.pl.embedding(adata, basis= 'UMAP_after', color='mclust4_after', show=False, 
palette=cmp_old) 
 
# Display spatial distribution of cells colored by mclust clustering for four samples after 
integration 
fig, axs = plt.subplots(1, 4, figsize=(12, 3)) 
it=0 
for section_id in section_list: 
    ax = sc.pl.embedding(adata[adata.obs['Sample']==section_id], basis= 'spatial', ax=axs[it], 
                      color=['mclust4_after'], title=section_id, show=False) 
    ax.axis('equal') 

it+=1 
# See Supplementary Fig. 4f (right) 
 




