
nature protocols https://doi.org/10.1038/s41596-023-00925-5

Protocol Check for updates

1

Streamlining spatial omics data analysis
with Pysodb

In the format provided by the
authors and unedited

https://doi.org/10.1038/s41596-023-00925-5
http://crossmark.crossref.org/dialog/?doi=10.1038/s41596-023-00925-5&domain=pdf

Supplementary Figure 1

Supplementary Figure 1. “Data availability” section of SpaGCN paper.
This figure uses SpaGCN paper as an example to show the advantage of pysodb in simplifying the data availability.
(A): In its original format, the data is linked to a variety of data storage platforms, requiring readers to navigate each
platform for download. Additionally, because these data sets originate from different technologies, substantial
processing time is required prior to applying the method itself.
(B): In contrast, with the application of pysodb, the authors only need to supply the dataset identifiers in SODB,
enabling readers to retrieve the processed data in a more time-efficient manner with pysodb.

Data availability
All data can be loaded by pysodb [https://protocols-pysodb.readthedocs.io/en/latest/] using
the following Data IDs:
(1) Human primary pancreatic cancer ST data: [moncada2020integrating]
(2) LIBD human dorsolateral prefrontal cortex 10x Visium data: [maynard2021trans]
(3) Mouse posterior brain 10x Visium data: [10x]
(4) Mouse cortex SLIDE-seqV2 data: [stickels2020highly]
(5) Mouse visual cortex STARmap data: [Wang2018Three_1k]
(6) Mouse olfactory bulb ST data: [stahl2016visualization]
(7) Mouse hypothalamus MERFISH data: [moffitt2018molecular]

A B

Spatial genomics data

Dataset Name: zhao2022spatial
Reference: Zhao et al. Nature
Technology: Slide-DNA-Seq
Species: Mouse
Tissue: Cerebellum

SOView

Spatial proteomics data

Dataset Name: keren2018a
Reference: Keren et al. Cell
Technology: MIBI-TOF
Species: Human
Tissue: Triple Negative Breast Cancer

SOView

Spatial metabolomics data

Dataset Name: MALDI_seed
Reference: METASPACE
Technology: MALDI
Species: Wheat
Tissue: Seed

SOView

Spatial multi-omics data

Dataset Name: liu2020high
Reference: Liu et al. Cell
Technology: DBiT-Seq
Species: Mouse
Tissue: Embroy

SOView

chrM 1:16299 chr1 1:1000000

Vimentin dsDNA

m/z 548 m/z 99

TTN RBKS

Spatially variable analysis

Spatially variable analysis

Spatially variable analysis

Spatially variable analysis

Supplementary Figure 2

Supplementary Figure 2. Applications of pysodb and spatially variable analysis on other spatial omics.
(A-C): Application on a spatial genomics data generated by Slide-DNA-Seq.
(D-F): Application on a spatial proteomics data generated by MIBI-TOF.
(G-I): Application on a spatial metabolomics data generated by MALDI.
(J-L): Application on a spatial multi-omics data generated by DBiT-Seq.
Taking (A-C) as an example, the data information is shown in (A). SOView visualization is shown in (B). Spatially
variable analysis results (using Sepal) are shown in (C), left: top spatial variation, right: bottom spatial variation.
Note that different spatial omics generated different features, e.g., loci for spatial genomics, protein for spatial
proteomics, mass-to-charge ratio (m/z) for spatial metabolomics, and gene/protein for spatial multi-omics.

A B C

D E F

G H I

J K L

Highest score Lowest score

Highest score Lowest score

Highest score Lowest score

Highest score Lowest score

Spatial genomics data

Dataset Name: zhao2022spatial
Reference: Zhao et al. Nature
Technology: Slide-DNA-Seq
Species: Mouse
Tissue: Cerebellum

SOView

Spatial proteomics data

Dataset Name: keren2018a
Reference: Keren et al. Cell
Technology: MIBI-TOF
Species: Human
Tissue: Triple Negative Breast Cancer

SOView

Spatial metabolomics data

Dataset Name: MALDI_seed
Reference: METASPACE
Technology: MALDI
Species: Wheat
Tissue: Seed

SOView

Spatial clustering

Spatial clustering

Spatial clustering

Spatial clustering

H3K9ac/H3K27me3

Zhao et al.
Nature 2022

Keren et al.
Cell 2018

Spatial clustering

m/z 851/479/929 Spatial clustering

Yuan et al. Nat Meth 2023

Supplementary Figure 3

Supplementary Figure 3. Applications of pysodb and spatially clustering on other spatial omics.
(A-C): Application on a spatial genomics data generated by Slide-DNA-Seq.
(D-F): Application on a spatial proteomics data generated by MIBI-TOF.
(G-I): Application on a spatial metabolomics data generated by MALDI.
Taking (A-C) as an example, the data information is shown in (A). SOView visualization is shown in (B). Spatial
clustering results (using SpaceFlow) and reference are shown in (C), left: specific markers (edited from Zhao et al.
Nature 2022) are used for tissue structure reference, right: spatial clustering result.

A B C

D E F

G H I

Spatial proteomics
data

Dataset Name:
Keren2018a

Reference:
Keren et al. Cell

Technology:
MIBI-TOF

Species:
Human

Tissue:
Triple Negative Breast Cancer

Spatial data integrationSOView

Before integration After integration
H3K9ac/H3K27me3

P4

P9

P4

P9

Spatial proteomics
data

Dataset Name:
Gut2018multiplexed

Reference:
Gut et al. Science

Technology:
Iterative Indirect
Immunofluorescence Imaging

Species:
Cell line

Tissue:
N/A

Spatial data integration

gut201gut20
18multiplexe
d_cell_129_
RGB8multipl
exed_cell_12

7_RGB

SOView

PCNA/GM130/p-RPS6 Before integration After integration

Cell127

Cell129

Cell140

Cell143

Reference

Keren et al. Cell 2018

Tumor

Tumor

Immune

Immune

Immune

Tumor

Tumor

Immune

Immune

Tumor

Tumor

Tumor

Tumor

Immune

Tumor

Tumor

Immune

Immune

Immune

Tumor

Tumor

Unaligned labels Aligned labels

Aligned labels

Aligned labels

Unaligned labels

Unaligned labels

Unaligned labels Aligned labels

Cell127

Cell129

Cell140

Cell143

Endosomes/Golgi

ER/mitochondria
Periphery

Nucleus

Periphery
ER/mitochondria

Endosomes/Golgi

Nucleus

Nucleus

Nucleus

PeripheryER/mitochondria

Periphery

ER/mitochondria

Endosomes/Golgi

Supplementary Figure 4

Supplementary Figure 4. Applications of pysodb and spatial data integration on other spatial omics.
(A-C): Application on a spatial proteomics data generated by MIBI-TOF.
(D-F): Application on a spatial proteomics data generated by Iterative Indirect Immunofluorescence Imaging (4i).
Taking (A-C) as an example, the data information is shown in (A). SOView visualization for data slices to be integrated
are shown in (B), top: patient 4, bottom: patient 9. The results before and after integration, and the tissue structure
references are shown in (C), left: specific markers (edited from Keren et al. Cell 2018) are used for tissue structure
reference and white arrows indicate tumor region, middle: before integration, right: after integration.

A B C

D E F

Supplementary Table 1. Summary of parameters.

Please find the excel file in Supplementary Information.

Supplementary Table 2. Summary of Docker images.

Supplementary Protocols

Case study 7: Generalizability to more spatial omics data

CRITICAL: Six case studies are previously supplied on using pysodb, including spatially variable
gene detection, spatial clustering, pseudo-spatiotemporal analysis, spatial data integration,
spatial data alignment, and spatial spot deconvolution. For this particular case study, we aim to
provide more analysis to explore other spatial omics data using pysodb, such as spatial
proteomics, metabolomics, genomics, and multi-omics.

Spatially variable analysis for Spatial genomics data (Timing ~ 8~9 h)

This section demonstrates the detection of spatially variable features using Pysodb and Sepal,
applied to spatial genomics data obtained from a mouse cerebellum via Slide-DNA-Seq.

1. Import packages and set configurations, enter the following commands:

import numpy as np
Import sepal package and its modules
import sepal.datasets as d
import sepal.models as m
import sepal.utils as ut

2. Import, initialize, and load data using Pysodb:

Import pysodb package
import pysodb
Initialization
sodb = pysodb.SODB()

Define names of the dataset_name and experiment_name
dataset_name = 'zhao2022spatial'
experiment_name = 'mouse_cerebellum_1_dna_200114_14'
Load a specific experiment
It takes two arguments: the name of the dataset and the name of the experiment to load.
adata = sodb.load_experiment(dataset_name,experiment_name)

CRITICAL STEP: A 'load_experiment' function is called with two 'dataset_name' and
'experiment_name' variables to load a specific experiment. Users can download data according to
their needs by changing different 'dataset_name' and 'experiment_name.'

Then, an AnnData object can be saved to an H5AD file format with the filename
'mouse_cerebellum_1_dna_200114_14.h5ad' by entering the following command:

adata.write_h5ad('mouse_cerebellum_1_dna_200114_14.h5ad')

3. Perform Sepal to spatially variable gene detection for spatial genomics data
First, create an instance of the 'RawData' class with the input file
'mouse_cerebellum_1_dna_200114_14.h5ad,' and enter the following command:

raw_data = d.RawData('mouse_cerebellum_1_dna_200114_14.h5ad')

Next, create an instance of the 'UnstructuredData' class, which is a subclass of the 'CountData'
class in Sepal, specifically designed to handle non-Visium or non-ST data, enter the following
command:

data = m.UnstructuredData(raw_data, eps = 0.1)

CRITICAL STEP: A new 'UnstructuredData' object named 'data' using the following input
arguments:(1) raw_data: A 'RawData' object containing the count matrix and other related data
for the non-Visium or non-ST dataset; (2) eps: A float value representing the allowed difference in
distance from the specified radius for finding approximate neighbors in the dataset. The default
value is 0.1.

The 'propagate' function simulates diffusion on spatial genomics data, applies normalization and
scaling, and saves the scaled diffusion times for each profile in a data frame named 'times.' These
diffusion times represent the rate at which gene expression levels disperse spatially during the
diffusion process:

times = m.propagate(data, normalize = True, scale =True)

Next, select the top 10 and bottom 10 profiles based on their diffusion times, and enter the
following commands:

Selects the top 10 and bottom 10 profiles based on their diffusion times
Set the number of top and bottom profiles to be selected as 10
n_top = 10
Computes the indices that would sort the times DataFrame in ascending order
sorted_indices = np.argsort(times.values.flatten())
Reverses the order of the sorted indices to obtain a descending order
sorted_indices = sorted_indices[::-1]
Retrieves the profile names corresponding to the sorted indices
sorted_profiles = times.index.values[sorted_indices]
Select the top 10 profile names with the highest diffusion times
top_profiles = sorted_profiles[0:n_top]
Selects the bottom 10 profile names with the lowest diffusion times
tail_profiles = sorted_profiles[-n_top:]
Retrieves the top 10 profiles from the times DataFrame
times.loc[top_profiles,:]

Define a 'pltargs' dictionary and then invoke the 'plot_profiles' function twice by changing
'tail_profiles' and 'top_profiles' parameters to create separate visualizations of the top and low
spatial genomics profiles. Execute the following commands in turn:

Inspect detecition visually by using the "plot_profiles function for first 10 SVG
Define a custom pltargs dictionary with plot style options
pltargs = dict(s = 5, cmap = "magma", edgecolor = 'none', marker = 'H',)
plot the profiles
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,top_profiles], crd = data.real_crd, rank_values =
times.loc[top_profiles,:].values.flatten(), pltargs = pltargs,)
See Supplementary Fig. 2c (left)

Inspect detecition visually by using the "plot_profiles function for last 10 SVG
Define a custom pltargs dictionary with plot style options
pltargs = dict(s = 5, cmap = "magma", edgecolor = 'none', marker = 'H',)
plot the profiles
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,tail_profiles], crd = data.real_crd, rank_values =
times.loc[tail_profiles,:].values.flatten(), pltargs = pltargs,)
See Supplementary Fig. 2c (right)

Spatially variable analysis for Spatial proteomics data (Timing ~ 1 min)

This section illustrates the application of Pysodb and Sepal in detecting spatially variable features,
utilizing unprecedented spatial proteomics data derived from human triple-negative breast
cancer through MIBI-TOF.

4. Import packages and set configurations, enter the following commands:

import numpy as np
Import sepal package and its modules
import sepal.datasets as d
import sepal.models as m
import sepal.utils as ut

5. Import, initialize, and load data using Pysodb:

Import pysodb package
import pysodb
Initialization
sodb = pysodb.SODB()

Define names of the dataset_name and experiment_name

dataset_name = 'keren2018a'
experiment_name = 'p9'
Load a specific experiment
It takes two arguments: the name of the dataset and the name of the experiment to load.
adata = sodb.load_experiment(dataset_name,experiment_name)

Then, save an H5AD file format with the filename 'keren2018a_p9.h5ad' by entering the
following command:

adata.write_h5ad('keren2018a_p9.h5ad')

6. Perform Sepal to spatially variable gene detection for spatial proteomics data
First, create an instance of the 'RawData' class with the input file 'keren2018a_p9.h5ad', and
enter the following command:

raw_data = d.RawData('keren2018a_p9.h5ad')

Next, create an instance of the 'UnstructuredData' class. This class is a specialized subclass of the
'CountData' class in Sepal, designed specifically for processing data that is neither Visium nor ST
type, enter the following command:

data = m.UnstructuredData(raw_data, eps = 0.1)

The 'propagate' function models diffusion on spatial proteomics data normalizes and scales it,
and stores the scaled diffusion times in a data frame called 'times':

times = m.propagate(data, normalize = True, scale =True)

Afterward, choose the profiles with the highest and lowest diffusion times, consisting of the top
10 and bottom 10 profiles, respectively, and execute the following commands:

Selects the top 10 and bottom 10 profiles based on their diffusion times
Set the number of top and bottom profiles to be selected as 10
n_top = 10
Computes the indices that would sort the times DataFrame in ascending order
sorted_indices = np.argsort(times.values.flatten())
Reverses the order of the sorted indices to obtain a descending order
sorted_indices = sorted_indices[::-1]
Retrieves the profile names corresponding to the sorted indices
sorted_profiles = times.index.values[sorted_indices]
Select the top 10 profile names with the highest diffusion times
top_profiles = sorted_profiles[0:n_top]
Selects the bottom 10 profile names with the lowest diffusion times
tail_profiles = sorted_profiles[-n_top:]

Retrieves the top 10 profiles from the times DataFrame
times.loc[top_profiles,:]

Similarly, create a dictionary called 'pltargs' and use it to call the 'plot_profiles' function twice,
with different parameters for 'tail_profiles' and 'top_profiles,' in order to generate two separate
visualizations of the top and bottom spatial proteomics profiles. Execute the following commands
sequentially:

Inspect detecition visually by using the "plot_profiles function for first 10 SVG
Define a custom pltargs dictionary with plot style options
pltargs = dict(s = 15, cmap = "magma", edgecolor = 'none', marker = 'H',)
plot the profiles
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,top_profiles], crd = data.real_crd, rank_values =
times.loc[top_profiles,:].values.flatten(), pltargs = pltargs,)
See Supplementary Fig. 2f (left)

Inspect detecition visually by using the "plot_profiles function for last 10 SVG
Define a custom pltargs dictionary with plot style options
pltargs = dict(s = 15, cmap = "magma", edgecolor = 'none', marker = 'H',)
plot the profiles
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,tail_profiles], crd = data.real_crd, rank_values =
times.loc[tail_profiles,:].values.flatten(), pltargs = pltargs,)
See Supplementary Fig. 2f (right)

Spatially variable analysis for Spatial metabolomics data (Timing ~ 20

min)

This section exemplifies the use of Pysodb and Sepal for identifying spatially variable features,
leveraging new spatial metabolomics data sourced from wheat seed via MALDI.

7. Import packages and set configurations, enter the following commands:

import numpy as np
Import sepal package and its modules
import sepal.datasets as d
import sepal.models as m
import sepal.utils as ut

8. Import, initialize, and load data using Pysodb:

Import pysodb package
import pysodb

Initialization
sodb = pysodb.SODB()

Define names of the dataset_name and experiment_name
dataset_name = 'MALDI_seed'
experiment_name = 'S655_WS22_320x200_15um_E110'
Load a specific experiment
It takes two arguments: the name of the dataset and the name of the experiment to load.
adata = sodb.load_experiment(dataset_name,experiment_name)

Subsequently, store an AnnData object in the H5AD file format under the filename
'S655_WS22_320x200_15um_E110.h5ad' by executing the following command:

adata.write_h5ad('S655_WS22_320x200_15um_E110.h5ad')

9. Perform Sepal to spatially variable gene detection for spatial metabolomics data
First, create an instance of the 'RawData' class with the input file
'S655_WS22_320x200_15um_E110.h5ad,' enter the following command:

raw_data = d.RawData('S655_WS22_320x200_15um_E110.h5ad')

Next, create an instance of the 'UnstructuredData' class, which is a subclass of the 'CountData'
class in Sepal, specifically designed to handle non-Visium or non-ST data by entering the
following command:

data = m.UnstructuredData(raw_data, eps = 0.1)

The 'propagate' function simulates diffusion on spatial metabolomics data, conducts
normalization and scaling procedures, and subsequently records the scaled diffusion times for
each profile into a data frame called 'times.' These diffusion times symbolize the rate at which
gene expression levels spread spatially throughout the diffusion process.

times = m.propagate(data, normalize = True, scale =True)

Next, select the top 10 and bottom 10 profiles based on their diffusion times, enter the following
commands:

Selects the top 10 and bottom 10 profiles based on their diffusion times
Set the number of top and bottom profiles to be selected as 10
n_top = 10
Computes the indices that would sort the times DataFrame in ascending order
sorted_indices = np.argsort(times.values.flatten())
Reverses the order of the sorted indices to obtain a descending order
sorted_indices = sorted_indices[::-1]

Retrieves the profile names corresponding to the sorted indices
sorted_profiles = times.index.values[sorted_indices]
Select the top 10 profile names with the highest diffusion times
top_profiles = sorted_profiles[0:n_top]
Selects the bottom 10 profile names with the lowest diffusion times
tail_profiles = sorted_profiles[-n_top:]
Retrieves the top 10 profiles from the times DataFrame
times.loc[top_profiles,:]

Generate two separate visualizations of the top and bottom spatial metabolomics profiles.
Execute the following commands sequentially:

Inspect detecition visually by using the "plot_profiles function for first 10 SVG
Define a custom pltargs dictionary with plot style options
pltargs = dict(s = 3, cmap = "magma", edgecolor = 'none', marker = 'H',)
plot the profiles
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,top_profiles], crd = data.real_crd, rank_values =
times.loc[top_profiles,:].values.flatten(), pltargs = pltargs,)
See Supplementary Fig. 2i (left)

Inspect detecition visually by using the "plot_profiles function for last 10 SVG
Define a custom pltargs dictionary with plot style options
pltargs = dict(s = 3, cmap = "magma", edgecolor = 'none', marker = 'H',)
plot the profiles
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,tail_profiles], crd = data.real_crd, rank_values =
times.loc[tail_profiles,:].values.flatten(), pltargs = pltargs,)
See Supplementary Fig. 2i (right)

Spatially variable analysis for Spatial multiomics Data (Timing ~ 1 min)

This section showcases the utilization of Pysodb and Sepal to discern spatially variable features,
drawing upon spatial multi-omics data derived from a mouse embryo through DBiT-Seq.

10. Import packages and set configurations, enter the following commands:

import numpy as np
Import sepal package and its modules
import sepal.datasets as d
import sepal.models as m
import sepal.utils as ut

11. Import, initialize, and load data using Pysodb:

Import pysodb package
import pysodb
Initialization
sodb = pysodb.SODB()

Define names of the dataset_name and experiment_name
dataset_name = 'liu2020high'
experiment_name = 'E10_whole_gene_best'
Load a specific experiment
It takes two arguments: the name of the dataset and the name of the experiment to load.
adata = sodb.load_experiment(dataset_name,experiment_name)

Next, save an H5AD file format with the filename 'E10_whole_gene_best.h5ad' by entering the
following command:

adata.write_h5ad('E10_whole_gene_best.h5ad')

12. Perform Sepal to spatially variable gene detection for spatial multiomics data
Firstly, create an instance of the 'RawData' class with the input file 'E10_whole_gene_best.h5ad',
and enter the following command:

raw_data = d.RawData('E10_whole_gene_best.h5ad')

To enhance the quality of the count matrix in the 'raw_data' object, utilize the 'filter_genes'
function to eliminate genes that are irrelevant or of low quality selectively, enter the following
command:

raw_data.cnt = ut.filter_genes(raw_data.cnt, min_expr=10, min_occur=5)

Next, initiate an instance of the 'UnstructuredData' class. This class, a subclass of the 'CountData'
class in Sepal, is specifically tailored to process data that does not conform to Visium or ST type.
Proceed by entering the following command:

data = m.UnstructuredData(raw_data, eps = 0.1)

The 'propagate' function simulates the process of diffusion on spatial multiomics data, executes
normalization and scaling, and subsequently saves the scaled diffusion times in a data frame
referred to as 'times':

times = m.propagate(data, normalize = True, scale =True)

Afterward, choose the profiles with the highest and lowest diffusion times, consisting of the top
10 and bottom 10 profiles, respectively, and run the following commands:

Selects the top 10 and bottom 20 profiles based on their diffusion times
Set the number of top and bottom profiles to be selected as 10
n_top = 10
Computes the indices that would sort the times DataFrame in ascending order
sorted_indices = np.argsort(times.values.flatten())
Reverses the order of the sorted indices to obtain a descending order
sorted_indices = sorted_indices[::-1]
Retrieves the profile names corresponding to the sorted indices
sorted_profiles = times.index.values[sorted_indices]
Select the top 10 profile names with the highest diffusion times
top_profiles = sorted_profiles[0:n_top]
Selects the bottom 10 profile names with the lowest diffusion times
tail_profiles = sorted_profiles[-n_top:]
Retrieves the top 10 profiles from the times DataFrame
times.loc[top_profiles,:]

Create separate visualizations of the top and low spatial multiomics profiles. Execute the
following commands in turn:

Inspect detecition visually by using the "plot_profiles function for first 10 SVG
Define a custom pltargs dictionary with plot style options
pltargs = dict(s = 25, cmap = "magma", edgecolor = 'none', marker = 'H',)
plot the profiles
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,top_profiles], crd = data.real_crd, rank_values =
times.loc[top_profiles,:].values.flatten(), pltargs = pltargs,)
See Supplementary Fig. 2l (left)

Inspect detecition visually by using the "plot_profiles function for last 10 SVG
Define a custom pltargs dictionary with plot style options
pltargs = dict(s = 25, cmap = "magma", edgecolor = 'none', marker = 'H',)
plot the profiles
fig,ax = ut.plot_profiles(cnt = data.cnt.loc[:,tail_profiles], crd = data.real_crd, rank_values =
times.loc[tail_profiles,:].values.flatten(), pltargs = pltargs,)
See Supplementary Fig. 2l (right)

Spatial clustering for Spatial genomics data (Timing ~ 1~2 min)

This section highlights the application of Pysodb and SpaceFlow in identifying spatial clustering,
employing novel spatial genomics data procured from a mouse cerebellum through
Slide-DNA-Seq.

13. Import packages and set configurations, enter the following commands:

import scanpy as sc
from SpaceFlow package import SpaceFlow module
from SpaceFlow import SpaceFlow

import palettable
cmp_pspace = palettable.cartocolors.diverging.TealRose_7.mpl_colormap
cmp_domain = palettable.cartocolors.qualitative.Pastel_10.mpl_colors
cmp_ct = palettable.cartocolors.qualitative.Safe_10.mpl_colors

CRITICAL: The Palettable package can be imported to access a wide range of color palettes and
colormap generators suitable for data visualization.

14. Import, initialize, and load data using Pysodb:

Import pysodb package
import pysodb
Initialize the sodb object
sodb = pysodb.SODB()

Define names of the dataset_name and experiment_name
dataset_name = 'zhao2022spatial'
experiment_name = 'mouse_cerebellum_1_dna_200114_14'
Load a specific experiment
It takes two arguments: the name of the dataset and the name of the experiment to load.
adata = sodb.load_experiment(dataset_name,experiment_name)

15. Perform SpaceFlow to spatial clustering for spatial genomics data
To analyze spatial genomics data, a 'SpaceFlow' object must first be created. This object takes in
expression count data, spatial location coordinates, sample names, and feature names from an
AnnData object called 'adata' as input. To create the 'SpaceFlow' object, enter the following
commands:

sf = SpaceFlow.SpaceFlow(
 count_matrix=adata.X,
 spatial_locs=adata.obsm['spatial'],
 sample_names=adata.obs_names,
 gene_names=adata.var_names
)

After creating the 'SpaceFlow' object, the next step involves preprocessing the spatial genomics
data, and enter the following command:

sf.preprocessing_data()

CRITICAL: When dealing with anndata (adata) where the count or expression matrix is extremely
sparse, or where there are a very limited number of features, it may be preferable to forego data
preprocessing. This is because over-processing in these instances could lead to errors or
diminished performance in downstream tasks. To skip preprocessing, user will need to make
modifications to the preprocessing_data function within the "SpaceFlow.py" file of the SpaceFlow
package. Specifically, user should comment out the sc.pp.normalize_total(), sc.pp.log1p(), and
sc.pp.highly_variable_genes() functions.

Following the above preprocessing step, train a SpaceFlow model and return the embedding by
entering the following command:

embedding = sf.train(
 spatial_regularization_strength=0.1,
 z_dim=50,
 lr=1e-3,
 epochs=1000,
 max_patience=50,
 min_stop=100,
 random_seed=42,
 gpu=0,
 regularization_acceleration=True,
 edge_subset_sz=1000000
)

Then, save the embeddings of the trained SpaceFlow model to adata.obsm['SpaceFlow'], enter
the following command:

adata.obsm['SpaceFlow'] = embedding

Subsequently, compute neighborhood graph utilizing the 'SpaceFlow' representation, conduct
dimensionality reduction using the UMAP algorithm, and apply clustering to the representation
employing the Leiden algorithm, enter the following commands:

sc.pp.neighbors(adata, use_rep= 'SpaceFlow')
sc.tl.umap(adata)
sc.tl.leiden(adata, resolution= 0.3)

Next, generate a plot of the UMAP embedding colored by 'leiden,' enter the following command:

sc.pl.umap(adata, color= 'leiden', color_map= cmp_pspace)
See Supplementary Fig. 3c (left)

Last, display a spatial embedding plot with clustering information, enter the following commands:

ax = sc.pl.embedding(adata, basis= 'spatial', color= 'leiden', show=False, color_map=cmp_pspace)
ax.axis('equal')
See Supplementary Fig. 3c (right)

Spatial clustering for Spatial proteomics data (Timing ~ 0.5 min)

This section presents the application of Pysodb and SpaceFlow in identifying spatial clustering,
employing novel spatial proteomics data procured from a human triple negative breast cancer
through MIBI-TOF.

16. Import packages and set configurations, enter the following commands:

import scanpy as sc
from SpaceFlow package import SpaceFlow module
from SpaceFlow import SpaceFlow

import palettable
cmp_pspace = palettable.cartocolors.diverging.TealRose_7.mpl_colormap
cmp_domain = palettable.cartocolors.qualitative.Pastel_10.mpl_colors
cmp_ct = palettable.cartocolors.qualitative.Safe_10.mpl_colors

17. Import, initialize, and load data using Pysodb:

Import pysodb package
import pysodb
Initialize the sodb object
sodb = pysodb.SODB()

Define names of the dataset_name and experiment_name
dataset_name = 'keren2018a'
experiment_name = 'p4'
Load a specific experiment
It takes two arguments: the name of the dataset and the name of the experiment to load.
adata = sodb.load_experiment(dataset_name,experiment_name)

18. Perform SpaceFlow to spatial clustering for spatial proteomics data
To generate a 'SpaceFlow' object for spatial clustering, input expression count data, spatial
location coordinates, sample names, and feature names from an AnnData object called 'adata' by
executing the subsequent command:

sf = SpaceFlow.SpaceFlow(
 count_matrix=adata.X,
 spatial_locs=adata.obsm['spatial'],

 sample_names=adata.obs_names,
 gene_names=adata.var_names
)

Upon creating the 'SpaceFlow' object, the next step entails preprocessing the spatial proteomics
data. The following command should be entered:

sf.preprocessing_data()

CRITICAL: In situations where anndata (adata) is characterized by an extremely sparse count or
expression matrix, or when dealing with limited-feature data such as spatial proteomics, it might
be more beneficial to omit data preprocessing. Over-processing in these cases could potentially
result in errors or impede performance in subsequent tasks. In order to bypass preprocessing,
modifications must be made to the preprocessing_data function located in the "SpaceFlow.py"
file, which is a part of the SpaceFlow package. Specifically, users should deactivate the
sc.pp.normalize_total(), sc.pp.log1p(), and sc.pp.highly_variable_genes() functions by
commenting them out.
After the preprocessing step has been completed, the user can proceed to train a SpaceFlow
model by executing the following command:

embedding = sf.train(
 spatial_regularization_strength=0.1,
 z_dim=50,
 lr=1e-3,
 epochs=1000,
 max_patience=50,
 min_stop=100,
 random_seed=42,
 gpu=0,
 regularization_acceleration=True,
 edge_subset_sz=1000000
)

Next, store the embeddings of the trained SpaceFlow model in the adata.obsm['SpaceFlow']:

adata.obsm['SpaceFlow'] = embedding

Next, calculate the neighborhood graph of cells using 'SpaceFlow' representation, perform UMAP
dimensionality reduction, and cluster the representation using the leiden algorithm, enter the
following commands:

sc.pp.neighbors(adata, use_rep= 'SpaceFlow')
sc.tl.umap(adata)
sc.tl.leiden(adata, resolution=0.05)

Next, visualize a UMAP embedding, enter the following commands:

sc.pl.umap(adata, color= 'leiden', color_map= cmp_pspace)
See Supplementary Fig. 3f (left)

Last, visualize a spatial embedding with clustering information, enter the following commands:

ax = sc.pl.embedding(adata, basis= 'spatial', color='leiden', show= False, color_map=cmp_pspace)
ax.axis('equal')
See Supplementary Fig. 3f (right)

Spatial clustering for Spatial metabolomics data (Timing ~ 2 min)

This section demonstrates the use of Pysodb and SpaceFlow to detect spatial clustering, using
innovative spatial metabolomics data derived from a wheat seed via MALDI.

19. Import packages and set configurations, enter the following commands:

import scanpy as sc
from SpaceFlow package import SpaceFlow module
from SpaceFlow import SpaceFlow

import palettable
cmp_pspace = palettable.cartocolors.diverging.TealRose_7.mpl_colormap
cmp_domain = palettable.cartocolors.qualitative.Pastel_10.mpl_colors
cmp_ct = palettable.cartocolors.qualitative.Safe_10.mpl_colors

20. Import, initialize, and load data using Pysodb:

Import pysodb package
import pysodb
Initialize the sodb object
sodb = pysodb.SODB()

Define names of the dataset_name and experiment_name
dataset_name = 'MALDI_seed'
experiment_name = 'S655_WS22_320x200_15um_E110'
Load a specific experiment
It takes two arguments: the name of the dataset and the name of the experiment to load.
adata = sodb.load_experiment(dataset_name,experiment_name)

21. Perform SpaceFlow to spatial clustering for spatial metabolomics data

In order to construct a 'SpaceFlow' object for the analysis of spatial metabolomics data, users can
supply expression count data, spatial location coordinates, sample names, and feature names
from an AnnData object, execute the following command:

sf = SpaceFlow.SpaceFlow(
 count_matrix=adata.X,
 spatial_locs=adata.obsm['spatial'],
 sample_names=adata.obs_names,
 gene_names=adata.var_names
)

After the SpaceFlow object is successfully created, the next step involves preprocessing the
spatial metabolomics data, execute the following command:

sf.preprocessing_data()

Upon the completion of the preprocessing stage, move forward to train the SpaceFlow model
and return the embedding by executing the following command:

embedding = sf.train(
 spatial_regularization_strength=0.1,
 z_dim=50,
 lr=1e-3,
 epochs=1000,
 max_patience=50,
 min_stop=100,
 random_seed=42,
 gpu=0,
 regularization_acceleration=True,
 edge_subset_sz=1000000
)

Next, store the embeddings generated by the trained SpaceFlow model into
'adata.obsm['SpaceFlow']':

adata.obsm['SpaceFlow'] = embedding

The following steps include computing the neighborhood graph of cells employing the
'SpaceFlow' representation, performing UMAP dimensionality reduction, and clustering the
representation with the 'leiden' algorithm, run the following commands:

sc.pp.neighbors(adata, use_rep= 'SpaceFlow')
sc.tl.umap(adata)
sc.tl.leiden(adata, resolution=0.04)

Next, generate a plot of the UMAP embedding colored by 'leiden', execute the following
command:

sc.pl.umap(adata, color= 'leiden', color_map= cmp_pspace)
See Supplementary Fig. 3i (left)

Finally, a spatial embedding can be visualized with 'leiden' color-coding and equal axis scaling,
enter the following commands:

ax = sc.pl.embedding(adata, basis= 'spatial', color='leiden', show= False, color_map=cmp_pspace)
ax.axis('equal')
See Supplementary Fig. 3i (right)

Spatial data integration for Spatial proteomics data (Timing ~ 1~2 min)

This section illustrates the application of Pysodb, STAGATE, and Harmony for the integration of
spatial proteomics data obtained from a human triple-negative breast cancer sample using
MIBI-TOF.

22. Import packages and set configurations, enter the following commands:

import pandas as pd
import scanpy as sc
import matplotlib.pyplot as plt
import STAGATE_pyG as STAGATE
import harmonypy as hm

import palettable
cmp_old = palettable.cartocolors.qualitative.Bold_10.mpl_colors
cmp_old_biotech = palettable.cartocolors.qualitative.Safe_4.mpl_colors

23. Import, initialize, and load data using Pysodb:

Firstly, a Pysodb package is imported and initialized by creating a 'SODB' object and enter the
following commands:

import pysodb
sodb = pysodb.SODB()

Proceed to load the first spatial proteomics dataset using Pysodb:

dataset_name = 'keren2018a'

experiment_name = 'p4'
adata = sodb.load_experiment(dataset_name,experiment_name)

Create a dictionary named 'adata_list,' modify the names in the 'adata' object by appending '_p4',
and save a copy of the modified 'adata' object in the dictionary with the key 'p4'. Execute the
following commands:

adata_list = {}
adata.obs_names = [x+'_p4' for x in adata.obs_names]
adata_list['p4'] = adata.copy()

Continuing further, load the second spatial proteomics dataset with Pysodb:

dataset_name = 'keren2018a'
experiment_name = 'p9'
adata = sodb.load_experiment(dataset_name,experiment_name)

Similarly, update names in another 'adata' object by adding '_p9,' and save a copy of the
modified object in the 'adata_list' dictionary under the key 'p9,' execute the following
commands:

adata.obs_names = [x+'_p9' for x in adata.obs_names]
adata_list['p9'] = adata.copy()

24. Running STAGATE for training

Firstly, construct spatial neighbor networks and calculate statistics for 'adata_list['p4']' and
'adata_list['p9']' by executing the following commands:

STAGATE.Cal_Spatial_Net(adata_list['p4'], rad_cutoff=50)
STAGATE.Stats_Spatial_Net(adata_list['p4'])

STAGATE.Cal_Spatial_Net(adata_list['p9'], rad_cutoff=50)
STAGATE.Stats_Spatial_Net(adata_list['p9'])

Next, train the STAGATE model on each individual sample in the adata_list, execute the following
command:

for section_id in ['p4', 'p9']:

adata_list[section_id] = STAGATE.train_STAGATE(adata_list[section_id],n_epochs=500)

Then, concatenate an 'adata' object stored in the 'adata_list' dictionary with the keys 'p4' and
'p9,' enter the following command:

adata = sc.concat([adata_list['p4'], adata_list['p9']], keys=None)

Calculates neighbors in the 'STAGATE' representation, applies UMAP, and performs leiden
clustering ,enter the following commands:

sc.pp.neighbors(adata, use_rep='STAGATE')
sc.tl.umap(adata)
sc.tl.leiden(adata,resolution=0.08)

Save UMAP and Leiden clustering results before integration and delete the STAGATE embedding
from each individual sample ,enter the following commands:

adata.obsm['UMAP_before'] = adata.obsm['X_umap']
adata.obs['leiden_before'] = adata.obs['leiden']
del adata.obsm['STAGATE']

Combine their 'Spatial_Net,' and summarize cells and edges information for the whole adata,
enter the following commands:

adata.uns['Spatial_Net'] = pd.concat([adata_list['p4'].uns['Spatial_Net'],
adata_list['p9'].uns['Spatial_Net']])
STAGATE.Stats_Spatial_Net(adata)

In the subsequent step, train a STAGATE model on the whole samples by executing the following
command:

adata = STAGATE.train_STAGATE(adata, n_epochs=500)

Next, create a new column 'Sample' by splitting each name and selecting the last element:

adata.obs['Sample'] = [x.split('_')[-1] for x in adata.obs_names]

Immediately following, visualize the UMAP projection (across different samples) , UMAP
embedding (for spatial clustering), and spatial distribution (for spatial clustering) before
integration, execute the following commands:

Plot a UMAP projection across different samples before integration
plt.rcParams["figure.figsize"] = (3, 3)
sc.pl.embedding(adata, basis= 'UMAP_before', color='Sample',
title='Unintegrated',show=False,palette=cmp_old_biotech)

Generate a plot of the UMAP embedding colored by leiden before integration
plt.rcParams["figure.figsize"] = (3, 3)
sc.pl.embedding(adata, basis= 'UMAP_before',

color='leiden_before',show=False,palette=cmp_old)

Display spatial distribution of cells colored by leiden clustering for two samples ('p4' and 'p9')
fig, axs = plt.subplots(1, 2, figsize=(6, 3))
it=0
for temp_tech in ['p4', 'p9']:
 temp_adata = adata[adata.obs['Sample']==temp_tech,]
 if it == 1:
 ax = sc.pl.embedding(temp_adata, basis="spatial", color="leiden_before",s=6,
ax=axs[it],
 show=False, title=temp_tech)
 ax.axis('equal')
 else:
 ax = sc.pl.embedding(temp_adata, basis="spatial", color="leiden_before",s=6,
ax=axs[it], legend_loc=None,
 show=False, title=temp_tech)
 ax.axis('equal')

it+=1
See Supplementary Fig. 4c (middle)

25. Perform Harmony for spatial data intergration

After obtaining the 'STAGATE' representation in the aforementioned steps, a 'run_harmony'
function is utilized to integrate spatial data. The Harmony algorithm identifies shared structures
across different batches and aligns them in a common space. Enter the following commands:

data_mat = adata.obsm['STAGATE'].copy()
meta_data = adata.obs.copy()
ho = hm.run_harmony(data_mat, meta_data, ['Sample'])

Post-process the Harmony output to prepare the data for downstream analysis. It involves
creating a Pandas data frame with the correlation matrix of the Harmony-corrected data,
assigning sample names to the data frame, mapping spatial coordinates to the
Harmony-corrected data, and adding a 'Sample' column to the metadata by mapping the
'Sample' information from the original dataset. Execute the following commands:

res = pd.DataFrame(ho.Z_corr)
res.columns = adata.obs_names
adata_Harmony = sc.AnnData(res.T)
adata_Harmony.obsm['spatial'] = pd.DataFrame(adata.obsm['spatial'],
index=adata.obs_names).loc[adata_Harmony.obs_names,].values
adata_Harmony.obs['Sample'] = adata.obs.loc[adata_Harmony.obs_names, 'Sample']

Create UMAP and spatial embedding plots with 'leiden' clustering after integration by executing

the following commands:

sc.pp.neighbors(adata_Harmony)
sc.tl.umap(adata_Harmony)
sc.tl.leiden(adata_Harmony, resolution=0.08)

Next, save UMAP and Leiden clustering results after integration, enter the following commands:

adata.obsm['UMAP_after'] = adata_Harmony.obsm['X_umap']
adata.obs['leiden_after'] = adata_Harmony.obs['leiden']

Lastly, visualize the UMAP projection (across different samples), UMAP embedding (for spatial
clustering), and spatial distribution (for spatial clustering) after the integration process, execute
the following commands:

Plot a UMAP projection different samples after integration
plt.rcParams["figure.figsize"] = (3, 3)
sc.pl.embedding(adata, basis= 'UMAP_after', color='Sample', title='STAGATE +
Harmony',show=False, palette=cmp_old_biotech)

Generate a plot of the UMAP embedding colored by leiden after integration
plt.rcParams["figure.figsize"] = (3, 3)
sc.pl.embedding(adata, basis= 'UMAP_after', color='leiden_after', show=False, palette=cmp_old)

Display spatial distribution of cells colored by leiden clustering for two samples ('p4' and 'p9')
after integration
fig, axs = plt.subplots(1, 2, figsize=(6, 3))
it=0
for temp_tech in ['p4', 'p9']:
 temp_adata = adata[adata.obs['Sample']==temp_tech,]
 if it == 1:
 ax = sc.pl.embedding(temp_adata, basis="spatial", color="leiden_after",s=6, ax=axs[it],
 show=False, title=temp_tech)
 ax.axis('equal')
 else:
 ax = sc.pl.embedding(temp_adata, basis="spatial", color="leiden_after",s=6, ax=axs[it],
legend_loc=None,
 show=False, title=temp_tech)
 ax.axis('equal')

it+=1
See Supplementary Fig. 4c (right)

Spatial data integration for Spatial proteomics data2 (Timing ~ 11~12

min)

This section showcases the use of Pysodb, STAGATE, and Harmony in the integration of additional
spatial proteomics data, specifically data gathered from a cell line using Iterative Indirect
Immunofluorescence Imaging.

26. Import packages and set configurations, enter the following commands:

import pandas as pd
import scanpy as sc
import matplotlib.pyplot as plt
import STAGATE_pyG as STAGATE
import harmonypy as hm

import palettable
cmp_old = palettable.cartocolors.qualitative.Bold_10.mpl_colors
cmp_old_biotech = palettable.cartocolors.qualitative.Safe_4.mpl_colors

27. Import, initialize, and load data using Pysodb:

import pysodb
sodb = pysodb.SODB()

Then define a section_list with samples from different experiments and load the experiments,
enter the following commands:

section_list = ['cell_129', 'cell_143', 'cell_140', 'cell_127']

dataset_name = 'gut2018multiplexed'
adata_list = {}
for section_id in section_list:
 temp_adata = sodb.load_experiment(dataset_name,section_id)
 temp_adata.var_names_make_unique()
 temp_adata.obs_names = [x+'_'+section_id for x in temp_adata.obs_names]

adata_list[section_id] = temp_adata.copy()

Then, visualize different experiments color by 'cluster', enter the following commands:

fig, axs = plt.subplots(1, 4, figsize=(12, 3))
it=0
for section_id in section_list:

 if it == 3:
 ax = sc.pl.embedding(adata_list[section_id], basis= 'spatial', ax=axs[it],
 color=['cluster'], title=section_id, show=False)
 ax.axis('equal')
 else:
 ax = sc.pl.embedding(adata_list[section_id], basis= 'spatial', ax=axs[it],
 color=['cluster'], title=section_id, show=False)
 ax.axis('equal')

it+=1

28. Running STAGATE for training
To begin, spatial neighbor networks should be constructed and statistics calculated separately for
different samples in the 'adata_list,' execute the following command:

for section_id in section_list:
 STAGATE.Cal_Spatial_Net(adata_list[section_id], rad_cutoff=3)

STAGATE.Stats_Spatial_Net(adata_list[section_id])

Next, proceed to train the STAGATE model on each individual sample present in the 'adata_list',
run the following command:

for section_id in section_list:

adata_list[section_id] = STAGATE.train_STAGATE(adata_list[section_id],n_epochs= 1500)

Next, Concatenate each individual sample in the adata_list into a AnnData object named
'adata_before', execute the following command:

adata_before = sc.concat([adata_list[x] for x in section_list], keys=None)

Calculate the nearest neighbors in the 'STAGATE' representation and computes the UMAP
embedding, and use Mclust_R to cluster cells in the 'STAGATE' representation into 10 clusters,
execute the following commands:

sc.pp.neighbors(adata_before, use_rep='STAGATE')
sc.tl.umap(adata_before)
adata_before = STAGATE.mclust_R(adata_before, used_obsm='STAGATE', num_cluster=10)
adata_before.obs['mclust10_before'] = adata_before.obs['mclust']

Next, concatenate each individual sample in the adata_list into another new AnnData object
named 'adata' by executing the following command:

adata = sc.concat([adata_list[x] for x in section_list], keys=None)

Save UMAP and mclust clustering results before integration and delete the STAGATE embedding

from each individual sample ,enter the following commands:

adata.obsm['UMAP_before'] = adata_before.obsm['X_umap']
adata.obs['mclust10_before'] = adata_before.obs['mclust10_before']
del adata.obsm['STAGATE']

To amalgamate their 'Spatial_Net' and summarize cells and edges information for the entire
'adata', execute the following commands:

adata.uns['Spatial_Net'] = pd.concat([adata_list[x].uns['Spatial_Net'] for x in section_list])
STAGATE.Stats_Spatial_Net(adata)

In the next step, train a STAGATE model on all samples collectively by running the following
command:

adata = STAGATE.train_STAGATE(adata, n_epochs= 1500)

Construct a new 'Sample' column by dividing each name and selecting the last two elements,
execute the following command:

adata.obs['Sample'] = [x.split('_')[-2] + '_' + x.split('_')[-1] for x in adata.obs_names]

Next, visualize the UMAP projection (across different samples), UMAP embedding (for spatial
clustering), and spatial distribution (for spatial clustering) before the integration, run the
following commands:

Plot a UMAP projection before integration
plt.rcParams["figure.figsize"] = (3, 3)
sc.pl.embedding(adata, basis= 'UMAP_before', color='Sample', title='Unintegrated',show=False,
palette=cmp_old_biotech)

Generate a plot of the UMAP embedding colored by mclust before integration
plt.rcParams["figure.figsize"] = (3, 3)
sc.pl.embedding(adata, basis= 'UMAP_before', color='mclust10_before', show=False,
palette=cmp_old)

Display spatial distribution of cells colored by mclust clustering for four samples
fig, axs = plt.subplots(1, 4, figsize=(12, 3))
it=0
for section_id in section_list:
 ax = sc.pl.embedding(adata[adata.obs['Sample']==section_id], basis= 'spatial', ax=axs[it],
 color=['mclust10_before'], title=section_id, show=False)
 ax.axis('equal')

it+=1

See Supplementary Fig. 4f (middle)

29. Perform Harmony for spatial data intergration
Upon obtaining the 'STAGATE' representation from the previous steps, the 'run_harmony'
function is employed to integrate the spatial data. The Harmony algorithm detects shared
structures across different batches and aligns them within a unified space, execute the following
commands:

data_mat = adata.obsm['STAGATE'].copy()
meta_data = adata.obs.copy()
ho = hm.run_harmony(data_mat, meta_data, ['Sample'])

Post-process the Harmony output to ready the data for subsequent analysis. This involves
constructing a Pandas data frame from the correlation matrix of the Harmony-corrected data,
assigning sample names to the data frame, mapping spatial coordinates to the
Harmony-corrected data, and appending a 'Sample' column to the metadata by mapping the
'Sample' information from the original dataset, run the following commands:

res = pd.DataFrame(ho.Z_corr)
res.columns = adata.obs_names
adata_Harmony = sc.AnnData(res.T)
adata_Harmony.obsm['spatial'] = pd.DataFrame(adata.obsm['spatial'],
index=adata.obs_names).loc[adata_Harmony.obs_names,].values
adata_Harmony.obs['Sample'] = adata.obs.loc[adata_Harmony.obs_names, 'Sample']

Calculate the nearest neighbors and generate the UMAP embedding for the integrated data.
Subsequently, apply Mclust_R to cluster the 'Harmony' representation into four clusters, input
the following commands:

sc.pp.neighbors(adata_Harmony)
sc.tl.umap(adata_Harmony)
adata_Harmony.obsm['Harmony'] = adata_Harmony.X
adata_Harmony = STAGATE.mclust_R(adata_Harmony, used_obsm='Harmony', num_cluster=4)
adata_Harmony.obs['mclust4_after'] = adata_Harmony.obs['mclust']

Next, save UMAP and mclust clustering results after integration, enter the following commands:

adata.obsm['UMAP_after'] = adata_Harmony.obsm['X_umap']
adata.obs['mclust4_after'] = adata_Harmony.obs['mclust4_after']

Lastly, visualize the UMAP projection (across different samples), UMAP embedding (for spatial
clustering), and spatial distribution (for spatial clustering) after the integration, execute the
following commands:

Plot a UMAP projection different samples after integration
plt.rcParams["figure.figsize"] = (3, 3)
sc.pl.embedding(adata, basis= 'UMAP_after', color='Sample', title='STAGATE +
Harmony',show=False, palette=cmp_old_biotech)

Generate a plot of the UMAP embedding colored by mclust after integration
plt.rcParams["figure.figsize"] = (3, 3)
sc.pl.embedding(adata, basis= 'UMAP_after', color='mclust4_after', show=False,
palette=cmp_old)

Display spatial distribution of cells colored by mclust clustering for four samples after
integration
fig, axs = plt.subplots(1, 4, figsize=(12, 3))
it=0
for section_id in section_list:
 ax = sc.pl.embedding(adata[adata.obs['Sample']==section_id], basis= 'spatial', ax=axs[it],
 color=['mclust4_after'], title=section_id, show=False)
 ax.axis('equal')

it+=1
See Supplementary Fig. 4f (right)

