Protocol

Check for updates

The use of methanol as a C1 building block

In the format provided by the authors and unedited

The use of methanol as a C1 building block

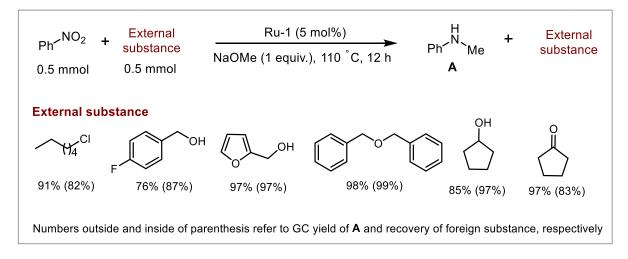
Bhaskar Paul^{1, 2}⊡, and Sabuj Kundu²⊡

¹Department of Chemistry, University of Oxford, Oxford, UK. ²Department of Chemistry, Indian Institute of Technology, Kanpur, India. ⊠e-mail: paulbhaskar96@gmail.com (BP); sabuj@iitk.ac.in (SK).

This PDF file includes: Supplementary Methods, Supplementary Box, Supplementary References, and Supplementary Figures

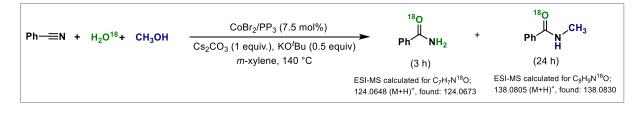
Supplementary Methods

Contents:


1. N-Methylation of nitrobenzene in the presence of external substances.

2. Labelling experiment with H_2O^{18} for the conversion of benzonitrile to N-methyl benzamide.

3. Labelling experiment with methanol- d_4 for the conversion of benzonitrile to N-methyl benzamide.


1. N-Methylation of nitrobenzene in the presence of external substances.¹

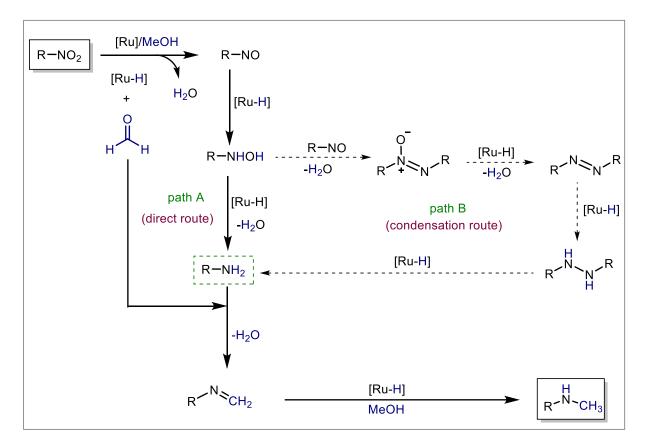
To an oven-dried pressure tube (9 mL), a magnetic stir-bar, nitro compound (0.5 mmol), external substance (0.5 mmol), NaOMe (0.5 mmol), Ru-1 (5 mol%), methanol (2.5 mL) and mesitylene (as internal standard) were added. Then, the pressure tube was sealed under an argon atmosphere and placed in a preheated oil bath at 110 °C (oil bath temperature) for 12 h. After that, the reaction mixture was cooled to room temperature, filtered through a small plug of silica, and analysed by GC to determine the conversion and selectivity.

2. Labelling experiment with $H_2 O^{18}$ for the conversion of benzonitrile to N-methyl benzamide.^2 $\,$

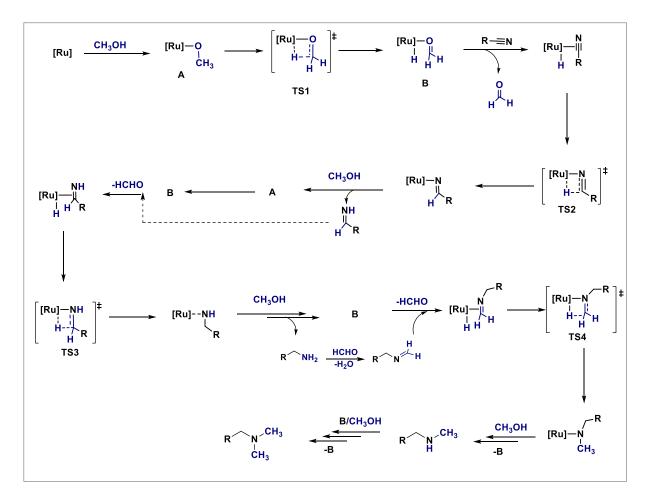
Inside an argon-filled oven dried pressure tube (2.5 mL), benzonitrile (0.2 mmol), CoBr₂ (7.5 mol %), tris[2- (diphenylphosphino)ethyl]phosphine (PP₃) ligand (7.5 mol %), Cs₂CO₃ (0.2 mmol), KO^tBu (0.1 mmol), H₂O¹⁸ (2.0 mmol), and methanol/*m*-xylene (0.5 mL, 1:1 v/v) were added. Then, the pressure tube was sealed and placed in a preheated oil bath at 140 °C (oil bath temperature) for 3 h (nitrile hydration) and 24 h (nitrile hydration and methylation). The conversion and yield of the reactions were determined by GC analysis using mesitylene as an internal standard. The products were confirmed through the ESI-MS analysis.

3. Labelling experiment with methanol-d₄ for the conversion of benzonitrile to N-methyl benzamide.²

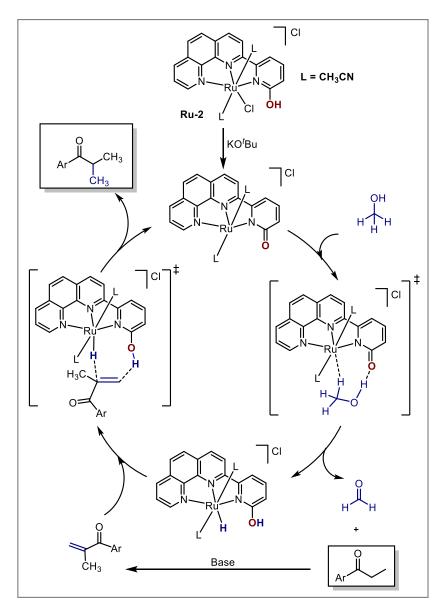
Inside an argon-filled oven dried pressure tube (2.5 mL), benzonitrile (0.2 mmol), CoBr₂ (7.5 mol %), tris[2-(diphenylphosphino)ethyl]phosphine (PP₃) ligand (7.5 mol %), Cs₂CO₃ (0.2 mmol), KO^tBu (0.1 mmol), H₂O (2.0 mmol), and methanol-d₄/*m*-xylene (0.5 mL, 1:1 v/v) were added. Then, the pressure tube was sealed and placed in a preheated oil bath at 140 °C (oil bath temperature) for 40 h. The conversion of the reactions was determined by GC analysis using mesitylene as an internal standard. The products were confirmed through ESI-MS analysis.

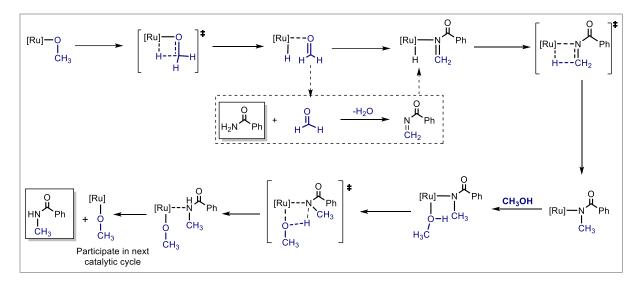

$Ph = N + H_2O + CD_3OD$	$\begin{array}{c} \hline CoBr_2/PP_3 (7.5 \text{ mol}\%) \\ \hline Cs_2CO_3 (1 \text{ equiv.}), \text{ KO}^t\text{Bu } (0.5 \text{ equiv}) \\ m\text{-xylene, 140 °C, 40 h} \end{array} \xrightarrow{\textbf{Ph}} \begin{array}{c} \textbf{Ph} \\ \textbf{H} \\ \hline \textbf{H} \end{array}$	
	ESI-MS calculated for C ₈ H ₆ D ₃ NO; 139.0951 (M+H)⁺, found: 139.0959	

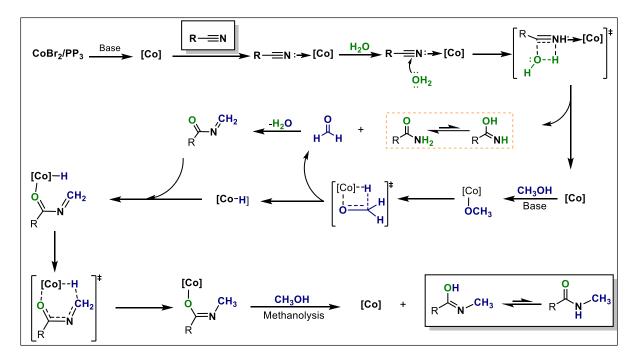
Supplementary Box 1 (Green Chemistry Metrics' for N-methylation of 4-methoxybenzamide with di-*tert*-butyl peroxide.³

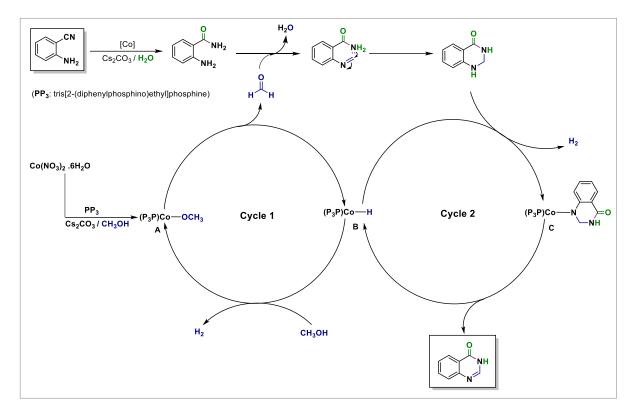

$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & $	b b b chemical Formula: $C_8H_{18}O_2$ Exact Mass: 146.13 5 + 146.13 = 297.19		C C C C C C C C	
Reactant a	4-methoxybenzamide	75.5 mg	FW 151.06	
Reactant b	Me ₃ CO-OCMe ₃ (DTBP; 3 equiv.)	219.2 mg	FW 146.13	
Solvent 1	H ₂ O	1000 mg	FW 18.01	
Solvent 2	HOAc	1049 mg	FW 60.05	
Product	4-methoxy-N- methylbenzamide	51.2 mg	FW 165.19	
E factor = [{(75.5 mg + 219.2 mg + 1000 mg + 1049 mg) - (51.2 mg)}/51.2 mg] = [(2343.7 mg - 51.2 mg)/51.2 mg] = 2292.5 mg/51.2 mg = 44.77 kg waste/1 kg product				
Atom economy = (165.19/297.19) x 100 = 55.58%				
Atom efficiency = 62 x (55.58/100) = 34.46%				
Carbon efficiency = (9/16) x 100 = 56.25%				
Reaction mass efficiency = [51.2 mg / (75.5 mg + 73.06 mg)] x 100 = 34.46%				

Supplementary References


- 1 Paul, B., Shee, S., Chakrabarti, K. & Kundu, S. Tandem Transformation of Nitro Compounds into N-Methylated Amines: Greener Strategy for the Utilization of Methanol as a Methylating Agent. *ChemSusChem* **10**, 2370-2374 (2017).
- 2 Paul, B., Maji, M. & Kundu, S. Atom-Economical and Tandem Conversion of Nitriles to N-Methylated Amides Using Methanol and Water. *ACS Catal.* **9**, 10469-10476 (2019).
- Li, Z.-l. & Cai, C. Pd/Ni catalyzed selective N–H/C–H methylation of amides by using peroxides as the methylating reagents via a radical process. *Org. Chem. Front.* **4**, 2207-2210 (2017).


Proposed mechanism of the ruthenium catalysed formation of N-methylated amine from nitrocompound using methanol.


Plausible pathway of the ruthenium catalysed conversion of nitrile to N-methylated amine with methanol.


Proposed mechanism of the α -methylation of ketone with methanol in presence of a bifunctional ruthenium catalyst.

Plausible pathway of the ruthenium catalysed N-methylation of the amide with methanol.

Proposed mechanism of the cobalt catalysed direct synthesis of N-methylated amide from nitrile using CH_3OH/H_2O .

Proposed mechanism of the cobalt catalysed synthesis of quinazolinone from 2-aminobenzonitrile using CH_3OH/H_2O .