Protocol

Check for updates

Light-mediated intracellular polymerization

In the format provided by the authors and unedited

Light Mediated Intracellular Polymerization

Mohamed Abdelrahim¹, Quan Gao¹, Yichuan Zhang^{1,2}, Weishuo Li³, Qi Xing¹, Mark Bradley^{4,*}, Jin Geng^{1,*}

¹ Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

² School of Pharmacy, Henan University, Kaifeng, China

³ Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, China

⁴ Precision Healthcare University Research Institute, Queen Mary University of London, Empire House, New Hope Road, London, E1 1HH, U.K.

Corresponding to Mark Bradley and Jin Geng

Email: m.bradley@qmul.ac.uk; jin.geng@siat.ac.cn

Synthesis of biotinylated methacrylate poly(ethylene glycol)¹

A mixture of biotin (1.0 g, 4.1 mmol), poly(ethylene glycol) methacrylate (1.5 g, 4.1 mmol, average moleculear weight = 500), EDC (0.78 g, 4.1 mmol), and 4-DMAP (0.05 g, 0.22 mmol) in DMF (50 mL) was stirred at room temperature for 24 h. The solvent was removed *in vacuo* and the crude product was re-dissolved in DCM and washed with 5% NaHCO₃ (aq), 1% HCl, and brine (three times each). The solvent was removed *in vacuo* and the crude product was purified by column chromatography eluting with DCM/MeOH (from100:2 to 100:10), which gave the product as a viscous oil in 30% yield (0.75 g)

¹H NMR (500 MHz, CDCl₃): $\delta = 6.15$ (s, 1H), 5.60 (s, 1H), 5.00 (s, 1H), 4.72 (s, 1H), 4.53 (m, 1H), 4.35 (m, 1H), 4.31 – 4.26 (m, 5H), 3.80 – 3.63 (m, 48H), 2.39 (t, J = 5.1 Hz, 2H), 1.98 (s, 3H), 1.49 – 1.71 (m, 6H); 13C NMR (500 MHz, CDCl₃): $\delta = 173.5$, 167.4, 162.7, 136.2, 125.7, 70.6, 69.1, 64.1, 63.9, 63.5, 61.8, 60.0, 55.2, 50.9, 40.5, 33.7, 28.2, 24.7, 18.3; IR λ_{max} (cm⁻¹) 3350, 2868, 1703, 1456, 1298, 1254, 1101, 952; ESI-MS (C₄₀H₇₂N₂O₁₇S): [M+H]⁺: 885.16, found: 885.20.

Fig. S1. ¹H NMR spectrum of biotinylated methacrylate poly(ethelene glycol) in CDCl3.

Synthesis of His-CTA² (Fmoc-amino) hexanoic acid linker bound resin S3

In an SPE filter cartridge (12 mL, fitted with a polystyrene resin functionalised with a 2-chlorotritylchloride linker (Cl-Trt) with 20 μ m pores, Sigma-Aldrich), thionyl chloride (40 μ L, 0.55 mmol) was added to preswollen (in anhydrous DCM) 2-chlorotrityl chloride resin (500 mg, reported loading 0.95 mmol/g) in anhydrous DCM under a N₂ atm, and the reaction mixture was stirred for 1 h. The solvent was drained, and the resin was washed with anhydrous DCM (3 × 5 mL) and anhydrous DMF (3 × 5 mL). The re-activated resin was swollen in anhydrous DCM for 10 min, followed by the addition of Fmoc-Ahx-OH (237 mg, 1.8 mmol) and DIPEA (275 μ L, 1.7 mmol) in anhydrous DMF (5 mL), and was shaken for 1 h. The resin was washed with anhydrous DCM (3 × 5 mL) and then treated twice with DCM/MeOH/DIPEA (80:15:5, 5 mL) and washed with DCM (3 × 5 mL) and DMF (3

 \times 5 mL).

6-Aminohexanoic acid linker bound resin S4

To the resin **S3** (500 mg, pre-swollen in DCM), piperidine (5 mL, 20% v/v in DMF) was added and the resin was shaken for 2 × 10 min. The solvent was drained, and the resin was washed with DCM (3 × 5 mL), DMF (3 × 5 mL), MeOH (3 × 5 mL) and diethyl ether (3 × 5 mL).

Hexahistidine tag resin S5

Fmoc-His(Trt)-OH (930 mg, 1.5 mmol) and ethyl cyano(hydroxyimino) acetate (Oxyma) (213 mg, 1.5 mmol) were dissolved in DMF (5 mL) and stirred for 10 min. *N*,*N*'-Diisopropylcarbodiimide (232 μ L, 1.5 mmol) was added and stirred for further 2 min. The mixture was added to resin S4 (500 mg, pre-swollen in DCM) and stirred for 3 h. The solution was drained, and the resin was washed with DCM (3 × 5 mL) and DMF (3 × 5 mL). The resulting resin was swollen in DCM, drained, and piperidine (5 mL, 20% *v*/*v* in DMF) was added and shaken for 2 × 10 min before the solvent was drained and the resin was washed with DCM (3 × 5 mL), MeOH (3 × 5 mL) and Et₂O (3 × 5 mL). This procedure was repeated six times to generate the hexahistidine tag moiety. The coupling reactions were monitored by a ninhydrin test.³

Hexahistidine tagged RAFT agent bound resin S6

CA-CTA (358 mg, 1.5 mmol), and ethyl cyano(hydroxyimino) acetate (213 mg, 1.5 mmol) were dissolved in DMF (5 mL) and stirred for 10 min. *N*,*N*'-diisopropylcarbodiimide (232 μ L, 1.5 mmol) was added and stirred for further 2 min. The mixture was added to resin **S5** (500 mg, pre-swollen in DCM) and reaction mixture was shaken for 3 h. The solution was drained, and the resin was washed with DCM (3 × 5 mL) and DMF (3 × 5 mL).

Hexahistidine tagged His-CTA

The resin **S6** (500 mg, pre-swollen in DCM) was shaken in TFA/water (95:5, v/v, 5 mL) for 2 h. The filtrate was collected and the resin was washed with TFA/water (3 × 5 mL). The solutions were combined and evaporated *in vacuo*. The crude product was purified by reverse phase column chromatography using a gradient of acetonitrile (5% to 95%) and water as the eluent (170 mg, 63%).

¹H NMR(400 MHz, DMSO- d_6) $\delta = 8.97-8.73$ (m, 6H), 8.68 (m, 1H), 8.59–8.38 (m, 3H), 8.30 (m, 1H), 8.13 (m, 1H), 7.42–7.08 (m, 6H), 4.81–4.41 (m, 7H), 3.34 (t, J = 7.2 Hz, 2H), 3.16–2.81 (m, 14H), 2.18 (t, J = 7.4, 2H), 1.61 (m, 2H), 1.54–1.28 (m, 8H), 1.28–1.13 (m, 3H), 0.88 (t, J = 7.4 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ = 223.1, 174.9, 170.6, 170.5, 170.4, 170.4, 170.2, 170.1, 170.0, 159.6, 159.3, 159.1, 158.9, 134.4, 134.3, 130.3, 130.2, 130.0, 129.9, 120.5, 118.5, 117.3, 117.2, 117.1, 116.5, 114.6, 52.6, 52.5, 52.5, 52.3, 50.1, 49.8, 39.0, 38.7, 36.6, 35.8, 34.1, 30.0, 29.0, 27.6, 26.4, 26.3, 25.5, 24.7, 24.6, 21.8, 18.5, 18.0, 13.9.

HRMS (ESI) for C₅₀H₆₇N₁₉O₉S₃ [M+H]⁺: *calcd*.: 1174.4604; *found*: 1174.4599.

HPLC (ELSD) $t_R = 1.49 \text{ min (purity > 98\%)}$.

Data in agreement with the literature.²

Fig. S2. ¹H spectrum of His-CTA recorded in DMSO-d₆.

Polymerization method	Stimuli	Location	Applications	Conditions	Structure	Mn	Ð	Ref
						(kDa)		
UV-Mediated Free	UV light	Cytoplasm,	Modulate cellular	FMMA (10 mM)	Nanoparticles	6.2	1.52	3
Radical Polymerization	(365 nm, 5 mW	nucleus,	function, enhance	and initiator (1	(50–70 nm)			
	cm ⁻²)	lysosomes	actine	mM)/ 5 min UV				
			polymerization,	illumination				
			bioimaging					
		Inner cell	Support the cell	(PEG-DA-Mn =	hydrogel			4
	UV light	membrane	membrane	700 Da (4 to 40		_	_	
	(365 nm, 5 mW	interface	interface against	wt%), Irgacure D-				
	cm ⁻²)	(Cytoplasm)	rupture and	2959 (1 wt%), and				
			disintegration and	0.05 wt% of				
			preserving its fluid	fluorescein O,O'-				
			function	diacrylate				
Visible-Mediated PET-	Visible light	Cytoplasm	Cancer treatment	(DMA) (5.0 mM)	Linear-	His-	His-	5
RAFT Polymerization	(470 nm, 100			or (HPMA) (50.0	polymer	PDMA-1	PDMA-1	
	mW/cm ⁻²)			mM), (His-CTA)		(13.2	(1.07)	
				(1000 µM), (eosin		kDa) and	and His-	
				Υ) (100 μΜ)		His-	PHPMA-	
						PHPMA-	1 (1.11)	
						1 (20.9		
						kDa)		
Redox reaction-Mediated	GSH-reduction	Cytoplasm	Formation of	FMMA (1 mM),	Nanoparticles			6
Free Radical	of		Intracellular	TEG-Br (10 μM),	of poly-			
Polymerization	Cu(II)-histidine		polymer bearing	Cu-His (400 µM),	FMMA (20-40	N/A	N/A	
	to Cu(I) which		paclitaxel for	NaAsc (800 µM)	nm)			
	activate alkyl		cancer treatment	and intracellular				
	bromide to			GSH				

Table S1. Summary of intracellular polymerization strategies.

	initiate the							
	polymerization							
	reaction							
Addition Polymerization	spontaneous	Cytoplasm	Cancer cell death	diamine monomer	Aggregates of	7.3	N/A	7
	amino-yne click		and imaging	1 (10 µM), diyne	poly(β-			
	polymerization			monomer 2 (10	aminoacrylate)			
	of primary			μM), and DMEM				
	amine and			(10% FBS)				
	terminal diyne			incubated with				
	activated by			HeLa cells for				
	adjacent			160 min				
	carbonyl							
	group							
Condensation	Glutathione	Cytoplasm	Bioimaging	Fluorescent Probes	Linear-	N/A	N/A	8
Polymerization	induces			1 (1 nmol in 30 µL	polymer			
	cyanobenzothia			of PBS buffer) and				
	zole (CBT)-			probe 2 (1 nmol in				
	cysteine			30 µL of PBS				
	condensation			buffer) were then				
				injected in mice				
	pH change,	At trans side	Bioimaging the	MDA-MB-468	Aggregates	N/A	N/A	9
	Furin activity,	of the Golgi	proteolytic activity	cell incubated with				
	and Glutathione	apparatus	of furin and a	monomer 8 (200				
	effect induces		trans-Golgi	μM) for 8 hrs and				
	cyanobenzothia		protease	stained with				
	zole (CBT)-			streptavidin-gold				
	cysteine			nanoparticles (15				
	condensation			nm)				

Oxidative	ROS induces the	Not clear	The interaction	Te nanoreservoirs	Linear-	N/A	N/A	10
Polymerization	polymerization		with	of 10 and 20 μg	polymer			
(ROS-Mediated	of organo-		selenoproteins	mL^{-1} composed of				
Polymerization)	tellurides		disrupts the in	(НО-				
	((HO-EG ₄ -C6)		cellulo antioxidant	EG4–C6)2–Te				
	₂ -Te)) to		system, increases	loaded on Au by				
	produce Te-O		the oxidative	coordination bond				
	polymers		stress, and leads to	(Te/Au= 6:1)				
			selective apoptosis					
			of cancer cell					
	ROS induced	Mitochondri	Dysfunction of the	Mito-1-NBD	^a Nano	N/A	N/A	11
	disulfide	а	mitochondria leads	bearing dithiole	aggregates			
	polymerization		to cell necroptosis	groups (30 µM)				
	of a dithiol-			incubated with				
	bearing			HeLa cell				
	molecule by the							
	oxidation							
	reaction							
	Transglutamina	Cytoplasm	In cellulo elastin-	FTIC labeled	Nanoparticles	28	1.25	12
	se enzyme		like polypeptides	peptide 4 (600 µM)	by decreasing			
	(TGase) forms		induces	Containing peptide	the			
	the isopeptide		intracellular	sequence	temperature			
	bond between		protease	QRLGVGFPK	from 37 °C			
Enzyme-Mediated	glutamine and		degradation and	incubated with	to 4 °C			
Polymerization	lysine side		cell death	HeLa cells				
	chain.							
	Transglutamina		Bioimaging of	FITC-Pep 9 (600	^b Nanostructure	N/A	N/A	13
	se enzyme	Cytoplasm	hypoxic	mM) with peptide	at 4 °C			
	(TGase)		neuroblastoma	sequence				

	polymerizes the		cells	QGVGFPK				
	peptide			incubated with				
	monomer with			HeLa cells to				
	active sites on			produce FITC-7P _F				
	the N- and C-			assemblies				
	terminals and							
	elastin-based							
	repeat units							
	(Xaa-Gly-Val-							
	Gly-Pro:							
	XGVGP or Gly-							
	Val-Gly-Xaa-							
	Pro: GVGXP)							
	Overexpressed	Cytoplasm	Melanoma therapy	FITC labelled	Nanofibers	N/A	N/A	14
	tyrosinase		by capture the	tripeptide Asp-	(300-600 nm)			
	induces		immunogenic	Phe-Tyr (DFY)				
	oxidative		functional proteins	(30 µM) was				
	polymerization		released from	incubated woth				
			ribosome, nucleus,	B16 cells				
			and mitochondria.					
			Introducing tumor					
			antigenic					
			properties					
	Cathepsin	Lysosome	Bioimaging and	AIEgen-peptide	°Nanoaggregat	N/A	N/A	15
	protease B		cancer therapy	conjugate (D2P1)	es			
	catalyzes CBT-			$(20 \ \mu M)$ and				
	cysteine			cyanobenzothiazol				
	condensation			e-cysteine (3CBT)				

polymerization	(20 µM) incubated		
in reducing	with MDA-MB-		
environment	231 and HT-29		
containing			
glutathione			
(GSH)			

^aThe size of nanoaggregates were recorded as 786 nm in PBS (not in cells) by using Mito-1 (10 mM). ^bDecreasing the temperature to 4 °C lead to a collapse in the polypeptide chains to form nanoparticles with a size distribution around at 872 ± 190 nm (*in vitro*). ^cThe size of nanoaggregates wasn't recorded in/out the cell.

References

- Aleksanian, S., Khorsand, B., Schmidt, R. & Oh, J. K. Rapidly thiol-responsive degradable block copolymer nanocarriers with facile bioconjugation. *Polym. Chem.* 3, 2138–2147 (2012).
- Zhang, Y. et al. Multifunctional, histidine-tagged polymers: antibody conjugation and signal amplification. Chem. Commun. 56, 13856-1385 (2020).
- 3. Geng, J. et al. Radical polymerization inside living cells. Nature chemistry 11, 578-586 (2019).

4. Lin, J.-C. et al. Intracellular hydrogelation preserves fluid and functional cell membrane interfaces for biological interactions. Nature communications 10, 1-11 (2019).

5. Zhang, Y. et al. Controlled Intracellular Polymerization for Cancer Treatment. JACS Au 2, 579-589 (2022).

6. Shen, Q. et al. Intracellular Radical Polymerization of Paclitaxel-Bearing Acrylamide for Self-Inflicted Apoptosis of Cancer Cells. ACS Materials Letters 3, 1307-1314 (2021).

7. Hu, R. et al. Lab-in-cell based on spontaneous amino-yne click polymerization. Science China Chemistry 62, 1198-1203 (2019).

8. Cui, L. et al. Reduction triggered in situ polymerization in living mice. Journal of the American Chemical Society 142, 15575-15584 (2020).

9. Liang, G., Ren, H. & Rao, J. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nature chemistry 2, 54-60 (2010).

10. Dai, Y. et al. Oxidative Polymerization in Living Cells. Journal of the American Chemical Society 143, 10709-10717 (2021).

 Kim, S. et al. Intramitochondrial Disulfide Polymerization Controls Cancer Cell Fate. ACS nano 15, 14492-14508 (2021).

12. Li, L.-L. et al. Intracellular construction of topology-controlled polypeptide nanostructures with diverse biological functions. Nature communications 8, 1-12 (2017).

13. Peng, B., Zhao, X., Yang, M.-S. & Li, L.-L. Intracellular transglutaminasecatalyzed polymerization and assembly for bioimaging of hypoxic neuroblastoma cells. Journal of Materials Chemistry B 7, 5626-5632 (2019).

14. Zhang, Q.-L. et al. A strategy based on the enzyme-catalyzed polymerization reaction of asp-phe-tyr tripeptide for cancer immunotherapy. Journal of the American Chemical Society 143, 5127-5140 (2021).

15. Qi, G. et al. Enzyme - Mediated Intracellular Polymerization of AIEgens for Light - Up Tumor Localization and Theranostics. Advanced Materials 34, 2106885 (2022).