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Force Curve Corrections 

The described procedures are applied in this order to every loaded raw curve in our Force Curve 
Analysis application to transform it into a force-indentation curve before a modified Hertz model is 
applied to determine the Young’s modulus. The procedures are as follows: 

1. Transformation of the recorded vertical cantilever deflection to the applied force 
2. Detection and correction of the baseline 
3. Detection of the contact point x position and shifting it to 0 
4. Converting the z-piezo travel to the vertical tip position 

In the following, each procedure is described in detail and the applied corrections are visualized on an 
exemplary curve. 

1) Transformation of the recorded vertical cantilever deflection to the applied force.  
(for more details see: https://github.com/CANTERhm/CANTER_Processing_Tool/wiki/Converting-
deflection-to-force) 
 
To transform the recorded vertical deflection of the cantilever (VDefl in [V]) into the applied force 
(F in [N]) on the sample, it is multiplied with the determined inverted optical lever sensitivity 
(InvOLS in [m/V]) and the determined spring constant of the cantilever (k in [N/m]). 
 

𝐹(𝑉𝐷𝑒𝑓𝑙) = 𝑉𝐷𝑒𝑓𝑙 ∙ 𝐼𝑛𝑣𝑂𝐿𝑆 ∙ 𝑘	
 

 

Supplementary Fig. 1 | Transformation of the vertical deflection in volts of a raw curve (left) to the applied force in 
newtons (right). 

 

2) Detection and correction of the baseline.  
(for more details see: https://github.com/CANTERhm/CANTER_Processing_Tool/wiki/Baseline-
detection-and-correction) 
 
The baseline of a force-indentation curve is the section of the curve where the probe is not in 
contact with the sample but moves toward its surface. Our software automatically detects and 
corrects the baseline of the force curve. Per default, the offset and tilt of the baseline are both 
transformed to 0.  
 
The baseline detection algorithm of our Force Curve Analysis application conducts the following 
general steps to detect the baseline in a force curve automatically: 



a) A fit window (20% of force curve x-length) is moved in 1% steps along the x-axis of the force 

curve and the slope of each curve section is determined. 

b) The fit window with the lowerest observed absolute slope is determined and used as the initial 

baseline estimation. 

c) To refine the baseline estimation, now the force curve is fitted using polynomials with orders 

ranging from 3 to 50 with a stepsize of 1. 

d) Of the polynomial giving the highest adjusted R² value, the second derivative is calculated. 

e) The roots of the second derivative are calculated to obtain the deflection points of the force 

curve. 

f) Starting from the previously determined baseline window (step b), the left baseline edge is 

shifted to the last deflection point closest to the contact point of the force curve. 

g) The right edge is either the first recorded point of the force curve or the deflection point (if it 

exists) closest to the previously determined right window edge from step b. 

h) A linear function is fitted to the force curve between the determined left and right baseline 

edges and it is checked if the linear fit is in agreement with the force curve with respect to the 

baseline noise. If not, the range is slightly decreased until this criterion is fulfilled. 

The automatically detected baselined edges using this algorithm are shown on the example force 

curve in Supplementary Fig. 2 as green dots. The resulting baseline region, used for the subsequent 

baseline correction is highlighted in red. 

 

 

Supplementary Fig. 2 | Force curve with automatically detected baseline. 

 

After the detection of the baseline, offset and tilt are corrected. This means the tilt is eliminated from 

the force curve by subtracting a first-order polynomial fitted on the detected baseline. Subsequently, 



the offset is corrected by shifting the mean of the detected baseline to 0 N. The result of the baseline 
correction can be seen in Supplementary Fig. 3.  

 

Supplementary Fig. 3 | Exemplary force curve before (left) and after (right) the correction of the baseline tilt and offset. 

3) Detection of the contact point x position and shifting it to 0.  
(for more details see: https://github.com/CANTERhm/CANTER_Processing_Tool/wiki/Contact-
point-correction) 
 
After the baseline of the force curve has been corrected, the next step is to determine the contact 
point. The contact point is the z-position of the piezo where the tip first got in contact with the 
sample surface. After the contact point has been determined, the corresponding value on the x-
axis of the curve is shifted to 0 µm. Algorithms to detect the contact point implemented in our 
Force Curve Analysis application are “via Intersect” and “via Hertz model”. When “via Hertz model” 
is selected, the “via Intersect” algorithm is applied first on the force curve. In the following, the 
two contact-point determination algorithms are explained in detail.  
 
a) Via Intersect  

In the previous correction step, the baseline of the curve has already been determined. The 
first step of this algorithm is to fit a linear function (green line in Supplementary Fig. 4) on the 
baseline (red highlighted curve section).  
 

 

Supplementary Fig. 4 | Linear function (green line) fitted on the detected baseline (red section of the curve). 

Subsequently, the last point (on the left side of the baseline) of the force curve lower than the 
fitted green line is determined (see the cyan solid circle in Supplementary Fig. 5). Additionally, 



the next (one step to the left) point of the force curve is determined (dark blue dot in 
Supplementary Fig. 5), Subsequently, the intersect between the fitted baseline (green line) and 
the line defined by two selected curve points (black dashed line) is calculated. The determined 
intersect point (black solid dot) is the contact point of the “via Intersect” algorithm. 
 

 

Supplementary Fig. 5 | Zoom in on the contact point region of the force curve. 

After shifting the x-value of the determined contact point to 0 µm, the resulting force curve is 
shown in Supplementary Fig. 6. 
 

 

Supplementary Fig. 6 | Force curve with determined and corrected contact point using the via Intersect algorithm. 

 
b) Via Hertz model  

Even when “via Hertz model” is selected in our application, the initial step is always the contact 
point correction using the “via Intersect” algorithm (see section 3a). Thus, the “via Hertz 
model” algorithm starts with a force curve where the contact point is already pre-defined, as 
shown in Supplementary Fig. 6. 
 
The idea of the “via Hertz model” algorithm is to determine the contact point using a linear fit 
on a defined end range (defined as a percentage value) of the contact part (x < 0) of the force 
curve and calculating the contact point of a modified Hertz model using the determined slope 
and y-axis intercept. This approach is faster compared to directly fitting a Hertz model with the 
boundary condition for the contact point of y = 0 and it is independent of the quality of the 
first contact between tip and sample. 



In our Force Curve Analysis application, the user defines a minimum and maximum indentation 

depth, the Hertz fit for determining the sample Young’s modulus is fitted to. Additionally, the 

user defines a percentage value when using the “via Hertz model” algorithm which defines the 

x range for the linear fit in the indentation part (see the grey area for an exemplary value of 

30% in Supplementary Fig. 7). This linear fit range is determined as the percentage (user 

selection) of the indentation part starting from the defined maximum indentation depth to the 

pre-defined contact point (x = 0). If the maximum indentation depth is higher than the depth 

reached with the current force curve, the range is calculated as the percent of the depth 

between the last (most left) force curve data point to 0, as shown in the representative curve 

(Supplementary Fig. 7). 

For the determination of the contact point from a linear fit, the modified Hertz model was 

linearized using the Taylor series on the evaluation point t0 which is defined in the middle of 

the linear fit range (see Supplementary Fig. 7). 

 

 

Supplementary Fig. 7 | Visualization of the fit range for the linear estimation (grey area) and the evaluation point (t0) for 
the Taylor series used to linearize the modified Hertz model. 

In the following, the linearization of the modified Hertz model is exemplarily described for a 

four-sided pyramid with a half-opening angle to an edge 𝛼𝑒. The modified Hertz model for 

this indenter geometry and an unconstrained contact point position is: 

𝐹(𝑑) =
1

2
 
𝐸 ∙ tan(𝛼𝑒)

(1 − 𝜈2)
∙ (𝑑 − 𝑑0)2. 

The parameters of this expression are: 

𝐹 The applied force on the sample as a function of the indentation depth 𝑑. 
𝑑 The indentation depth of the indenter into the sample. 
𝐸 Young’s modulus of the sample. 
𝜈 Poisson’s ratio of the sample. 
𝛼𝑒 The half-opening angle to an edge of the four-sided pyramid. 
𝑑0 The contact point position on the x-axis where the tip starts to indent the sample. 

Supplementary Table 1 | Parameters of the modified Hertz model for a four-sided pyramid. 

For the linearization, we only use the first two terms (power of 0 and 1) of the Taylor series 

on the evaluation point 𝑡0: 

𝑓𝑙𝑖𝑛(𝑡0) = 𝑓(𝑡0) +
𝑓′(𝑡0)

1!
(𝑥 − 𝑡0) 



=> 𝐹(𝑑) =
𝐸 ∙ tan(𝛼!)
2(1 − 𝜈")

∙ (𝑡# − 𝑑#)" +
𝐸 ∙ tan(𝛼!)
(1 − 𝜈")

∙ (𝑡# − 𝑑#) ∙ (𝑑 − 𝑡#) 

In the next step, we transform this linearized function into a standard linear equation of the 
form 𝑦 = 𝑚 ∙ 𝑥 + 𝑡. First, we summarize the constants into 𝐶: 

𝐶 =
𝐸 ∙ tan(𝛼!)
(1 − 𝜈")

 

=> 𝐹(𝑑) =
𝐶
2
∙ (𝑡# − 𝑑#)" + 𝐶 ∙ (𝑡# − 𝑑#) ∙ (𝑑 − 𝑡#) 

Transformation into the standard linear equation: 

𝐹(𝑑) =
𝐶
2
∙ (𝑡# − 𝑑#)" + 𝐶 ∙ (𝑡# − 𝑑#) ∙ (𝑑 − 𝑡#) 

=
𝐶
2
∙ F𝑡#" − 2𝑡#𝑑# + 𝑑#

"G + 𝐶 ∙ (𝑡#𝑑 − 𝑡#" − 𝑑#𝑑 + 𝑡#𝑑#) 

=
𝐶
2
∙ F𝑡#" − 2𝑡#𝑑# + 𝑑#

"G +
𝐶
2
∙ (2𝑡#𝑑 − 2𝑡#" − 2𝑑#𝑑 + 2𝑡#𝑑#) 

=
𝐶
2
∙ F2𝑡#𝑑 − 2𝑑#𝑑 + 𝑡#" − 2𝑡#" + 𝑑#

" − 2𝑡#𝑑# + 2𝑡#𝑑#G 

=
𝐶
2
∙ F2𝑡#𝑑 − 2𝑑#𝑑 − 𝑡#" + 𝑑#

"G 

= 𝐶𝑡#𝑑 − 𝐶𝑑#𝑑 −
𝐶 ∙ F𝑡#" − 𝑑#

"G
2

	 

= 𝐶 ∙ (𝑡# − 𝑑#) ∙ +
𝐶 ∙ F𝑑#

" − 𝑡#"G
2

	 

Relating linearized model to slope 𝑚 and y-axis intercept 𝑡 of the standard linear equation: 

=> 𝐹(𝑑) = 𝐶 ∙ (𝑡# − 𝑑#)HIIIJIIIK
(

∙ 𝑑 +
𝐶 ∙ F𝑑#

" − 𝑡#"G
2

	HIIIIJIIIIK
)

 

=> 	𝑚 = 	𝐶 ∙ (𝑡# − 𝑑#)							&						𝑡 =
𝐶 ∙ F𝑑#

" − 𝑡#"G
2

 

In the next step, we use the derived relations of the modified Hertz model parameters with 
the slope and y-axis intercept of the linear fit to calculate the contact point position of the 
corresponding Hertz model 𝑑#. Therefore, we convert both expressions to 𝐶 

=> 𝐶 =
𝑚

(𝑡# − 𝑑#)
							&						𝐶 =

2𝑡
F𝑑#

" − 𝑡#"G
 

and equate them which results in 

𝑚
(𝑡# − 𝑑#)

=
2𝑡

F𝑑#
" − 𝑡#"G

. 

To solve this equation for 𝑑#, we transform the expression above to the form of the 
quadratic standard form 𝑎𝑥" + 𝑏𝑥 + 𝑐 = 0: 



𝑚
(𝑡# − 𝑑#)

=
2𝑡

F𝑑#
" − 𝑡#"G

 

=> 𝑚F𝑑#
" − 𝑡#"G = 2𝑡(𝑡# − 𝑑#) 

=> 𝑚𝑑#
" −𝑚𝑡#" = 2𝑡𝑡# − 2𝑡𝑑# 

=> 𝑚⏟
*
∙ 𝑑#

" + 2𝑡⏟
+
∙ 𝑑#−𝑚𝑡#" − 2𝑡𝑡#HIIIJIIIK

,
= 0. 

Now we use the quadratic formula 

𝑥-," =
−𝑏 ± √𝑏" − 4𝑎𝑐

2𝑎
 

with the determined coefficients 

𝑎 = 𝑚 
𝑏 = 2𝑡 
𝑐 = −𝑚𝑡#" − 2𝑡𝑡# 

to determine the 𝑑# fulfilling the quadratic expression 

𝑑#-," =
−2𝑡 ± V4𝑡" − 4𝑚(−𝑚𝑡#" − 2𝑡𝑡#)

2𝑚
 

=
−2𝑡 ± V4𝑡" + 4𝑚"𝑡#" + 8𝑚𝑡𝑡#

2𝑚
 

=
−𝑡 ± V𝑡" + 2𝑡𝑚𝑡# +𝑚"𝑡#"

𝑚
 

=
−𝑡 ± V(𝑡 + 𝑚𝑡#)"

𝑚
 

=
−𝑡 ± (𝑡 + 𝑚𝑡#)

𝑚
 

=> 𝑑# = X
−
𝑡
𝑚 +

𝑡
𝑚 + 𝑡# = 𝑡# →	not	a	reasonable	solution!

−
𝑡
𝑚 −

𝑡
𝑚 − 𝑡# = −

2𝑡
𝑚 − 𝑡# →	reasonable	solution!

 

 

Thus, the result is an equation to determine the contact point position 𝑑# using the slope 𝑚 
and y-axis intercept 𝑡 derived from a linear fit and the evaluation point of the Taylor series 𝑡#: 

𝑑# = −
2𝑡
𝑚
− 𝑡# . 

 

For the example curve, the linear fit on the last 30% gives the following results for the 
parameters: 

𝑚 = −0.0479	
N
m

 



𝑡 = −16.99	nN 

𝑡# = −0.557	µm 

Using these parameters, the calculated contact point of a modified Hertz model which has 
the slope	𝑚 on the x-value of 𝑡# is 

𝑑# = −
2 ∙ (−16.99	 × 10/0	N)

−0.0479	 Nm
− (−0.557 × 10/1		𝑚) = −1.524 × 10/3	m 

𝑑# = −0.1524	µm 

In Supplementary Fig. 8 the contact point position determined with this algorithm is shown 
as a vertical dashed black line. Additionally, the resulting modified Hertz model with the 
calculated contact point 𝑑# and the slope 𝑚 at the x position 𝑡# is visualized as a green 
dashed line. 

Important to note here is that in our software, this resulting modified Hertz model is not used 
to determine the Young’s modulus of the sample. It is only used to determine the contact point 
in this algorithm. The Young’s modulus of the sample is determined after the corrections 
described in this SI by fitting a modified Hertz model to the indentation depth range defined 
by the user in the edit fields Fit start and Fit depth in the Force Curve Analysis application. 
 

 

Supplementary Fig. 8 | Visualization of the determined contact point by the „via Hertz model“ algorithm. 

Finally, the detected contact point position is shifted to zero. Thus, the resulting force curve 
after the contact point correction „via Hertz model“ algorithm is shown in Supplementary Fig. 
9. 
 



 

Supplementary Fig. 9 | Resulting force curve after the detection of the contact point and shifting ist x-position to 0. 

 

4) Converting the z-piezo travel to the vertical tip position.  
(for more details see: https://github.com/CANTERhm/CANTER_Processing_Tool/wiki/Calculating-
vertical-tip-position) 
 
The last correction step, before any mechanical model is applied to the curve to extract sample 
parameters like the Young’s modulus, is to correct the z-piezo travel (z) using the known upwards 
deflection of the cantilever in meters (VDefl[m]) to achieve the vertical tip position. This 
transformation gives the real depth of indentation into the sample (d). 
 

 

Supplementary Fig. 10 | Schematic to visualize the vertical z-piezo travel (z), the vertical deflection of the cantilever 
(VDefl), and the indentation depth (d). 

This can be done by substracting for each recorded data point of the force curve (i) the vertical 
deflection from the z-piezo travel:  
 

𝑑(𝑖) = 𝑧(𝑖) − 𝑉𝐷𝑒𝑓𝑙[𝑚](𝑖).	
	

The vertical deflection in meters can be calculated from the recorded vertical deflection signal in 
volts (VDefl[V]) by multiplication with the determined inverted optical lever sensitivity (InvOLS): 
 

𝑉𝐷𝑒𝑓𝑙[𝑚] = 𝑉𝐷𝑒𝑓𝑙[𝑉] ∙ 𝐼𝑛𝑣𝑂𝐿𝑆.	
 
Taken together, the vertical tip position for each data point of the force curve is calculated using 
the following equation:  
 

𝑑(𝑖) = 𝑧(𝑖) − (𝑉𝐷𝑒𝑓𝑙[𝑉](𝑖) ∙ 𝐼𝑛𝑣𝑂𝐿𝑆)	
	



In the figure below, the force-indentation curve before (left) and after (right) the correction is 
displayed (blue solid line). Additionally, in the right figure the curve before the z-travel has been 
converted into the vertical tip. 
 

 

Supplementary Fig. 11 | Example curve before (left) and after (right) the transformation of the z-piezo travel to the vertical 
tip position. 

  



Implementing Additional File Types 

To enable the import of additional force volume files into the Force Curve Analysis application of our 
CANTER Processing Toolbox, the following changes/insertions in the bihertz_gui_App.mlapp file 
located in the folder GUI-files\bihertz_fit have to be made: 

1. Insert the new file extension in the filter strings of the uigetfile function of the 
button_file_Callback (see Supplementary Fig. 12). 
 

 

Supplementary Fig. 12 | Highlighted filter strings of the „uigetfile“ function inside the „button_file_Callback“ 
function. 

Currently, .jpk-force-map, .jpk-qi-data, and a special kind of text file (Mach-1 text file) can be 
selected using the file button. 
 
 

2. Add an additional case to the Fext switch for your new file type inside the file-case of the 
handles.loadtype switch located in the button_load_data_Callback (see Supplementary Fig. 
13). 
 

 

Supplementary Fig. 13 | The „Fext“ switch where the import function of the new file type has to be added 
located inside the „button_load_data_Callback“ function. 

In the screenshot above, you can see the already existing cases for the file types .jpk-force-
map and .jpk-qi-data. 
 
 

3. Write an import function for your custom file type. This function need to fulfill the following 
criteria:  
-accept the full path to your new file as string or character variable as input parameter. Give 
the function for this imput parameter the user selected path stored in the 
“app.edit_filepath.String” variable. 



-must have the following 11 output parameters in the corresponding output order on the 
specified position number: 
 
1. x_data: The extend x data of the imported force curves as a struct variable containing a 
field for each force curve named “curveX”, where X is the index of the corresponding force 
curve starting at 0 (see Supplementary Fig. 14). Each field contains the x data of the 
corresponding curve as a double vector in m. 
 

 

Supplementary Fig. 14 | Example of the first 20 fields of the „x_data“ struct. 

2. y_data: The extend y data of the imported force curves as a struct variable containing a 
field for each force curve named “curveX”, where X is the index of the corresponding force 
curve starting at 0 (see Supplementary Fig. 15). Each field contains the y data of the 
corresponding curve as a double vector in V: 
 

 

Supplementary Fig. 15 | Example of the first 20 fields of the „y_data“ struct. 

 
3. and 4. are not used in the Force Curve Analysis application. 



 
5. Forcecurve_label: This output varualbe has to contain the labels of the fields in the data 
structs (output parameters 1 - 4) as a one-column cell array where each cell contains the 
character sequence of one curve label like shown in Supplementary Fig. 16. 
 

 

Supplementary Fig. 16 | Example of the first 12 entries of the „Forcecurve_label“ cell array. 

 
6. And 7. are not used in the Force Curve Analysis application. 
 
8. name_of_file: Name of the selected file as character array. 
 
9. map_images: A struct containing all loaded channel images from the force volume file. An 
example resulting from a QI-Map file is shown in Supplementary Fig. 17. 
 

 

Supplementary Fig. 17 | Example of the „map_images“ struct fields after loadin a .jpk-qi-data file. 

 
 



Each field is again a struct containing all image information for the corresponding channel. 
Example of the measuredHeight channel of a 3 µm x 3 µm QI-Map containing 25x25 force-
indentation curves is shown in Supplementary Fig. 18. 
 

 

Supplementary Fig. 18 | Strunct contained in the „measuredHeight“ field of the „map_images“ struct. 

The code to import images from JPK map files can be found in the function 
“ForceMapImageData” located in the folder “IO-functions” ® ”Read_functions” of our 
CANTER Processing Toolbox. 
 
10. Not used in the Force Curve Analysis application. 
 
11. handles.map_info_array: A two-column cell array (left image of Supplementary Fig. 19) 
containing map information that will be displayed in the Info-panel (right image of 
Supplementary Fig. 19) of the Force Curve Analysis application: 
 

 

Supplementary Fig. 19 | (left) „handles.map_info_array“ cell array containing the map information read from the header 
files of a .jpk-qi-data file. (right) The information stored in the „handles.map_info_array“ cell array presented in the „Info 
Panel“ of the Force Curve Analysis application. 



Young’s Modulus Histogram 

In Supplementary Fig. 20, the combined histogram of the Young’s modulus results from 4 human 

pulmonary BMs (Slides 4, 9, 29, and 40) is shown. Because the Young’s modulus is a quantity that can 

only attain positive values, without transformation it is not normally distributed. Thus, before 

determining summary statistics using a normal distribution like the mean, the values must be 

normalized using a log transformation. 

 

Supplementary Fig. 20 | Combined Young’s modulus histogram of the results of four human pulmonary BMs showing a 
right-skewed distribution. 

 




