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Supplementary Methods

1. Recommended preprocessing of mutations for CONIPHER

Mutation calling. CONIPHER is a method that takes processed mutation data as input. For

mutation clustering and tree building on multi-sample, bulk, whole-exome sequencing data it is

recommended to follow a pipeline similar to that used to process the TRACERx421 NSCLC

cohort1,2. The details of the mutation preprocessing pipeline used in the TRACERx421 study

were broadly similar to the TRACERx100 cohort3, and a detailed description can be found in our

companion manuscript1. In brief, somatic variant calling was performed using VarScan24 and

MuTect5 and mutations present at a variant count of < 10 are filtered out. In particular,

multi-sample sequencing was leveraged in order to “force call” presence of a low-confidence

mutation in tumour samples, if the mutation was called as confidently present in a distinct

sample of the same tumour. It is strongly recommended to implement this latter step prior to

running CONIPHER for more accurate results.

https://paperpile.com/c/EcoX4l/INnd+GjLf
https://paperpile.com/c/EcoX4l/92BDq
https://paperpile.com/c/EcoX4l/INnd
https://paperpile.com/c/EcoX4l/pB43u
https://paperpile.com/c/EcoX4l/UpdP


2. CONIPHER method additional details

This section describes the details of the CONIPHER method to reconstruct mutation clusters

and tumour phylogenetic trees. It is noted that CONIPHER tree building is compatible with

clustering performed using other methods provided the input is formatted as specified in this

protocol. The CONIPHER mutation clustering method is designed as an extension of the

existing algorithm PyClone (v.0.13.1)6. We find that the implemented extensions improve the

performance of mutation clustering, based on a simulated ground truth dataset (Figure 2).

CONIPHER clustering is therefore recommended, but not required.

2.1 Mutation clustering

The CONIPHER mutation clustering method takes as input a mutation table in long format,

whereby each row describes one mutation in one sample (see PROCEDURE, Figure 4). The

clustering comprises four main steps: (1) copy number preprocessing, (2) pre-clustering

mutations based on presence/absence, (3) Dirichlet clustering using the existing PyClone

algorithm6, and (4), post-processing the inferred mutation clusters to remove clusters driven by

subclonal copy number3 and merge mutation clusters that were erroneously assigned to be

subclonal. These steps are outlined briefly below.

Copy number preprocessing. The first step in CONIPHER mutation clustering is to

estimate the PhyloCCF of each mutation. This calculation is performed as in previous work3,

whereby the standard cancer cell fraction (CCF) is computed by transforming the VAF by the

expected mutation copy number and tumour purity3,7–9 and subsequently correcting for subclonal

copy number alterations3 to generate the estimated PhyloCCF of each mutation.

https://paperpile.com/c/EcoX4l/0AUV0
https://paperpile.com/c/EcoX4l/0AUV0
https://paperpile.com/c/EcoX4l/92BDq
https://paperpile.com/c/EcoX4l/92BDq
https://paperpile.com/c/EcoX4l/BMqBi+92BDq+P2NKZ+nmCh4
https://paperpile.com/c/EcoX4l/92BDq


Pre-clustering mutations. The second step is to separate mutations based on their

presence or absence classification in each tumour sample into groups, whereby presence is

defined as at least one mutant read. This step was found to improve over-clustering of

mutations. In this step, an indel- and sample-specific VAF correction factor is implemented as

previously described3 in order to prevent potentially incorrectly estimated indel VAFs leading to

separate mutation clusters. In brief, for each tumour sample, each indel PhyloCCF (and

mutation copy number) is multiplied by that indel sample-specific correction factor. The

correction factor is computed by dividing the median mutation PhyloCCF of ubiquitous SNVs

(i.e., present in all tumour samples) by the median mutation PhyloCCF of ubiquitous indels,

under the assumption that the majority of ubiquitous mutations (SNVs and indels) will be truncal.

Any presence/absence group of mutations consisting of less than 5 mutations were not

clustered using PyClone.

PyClone clustering. PyClone6 is applied to each group of mutations independently. By

default, CONIPHER runs PyClone (v.0.13.1) with 10,000 iterations and a burn-in of 1,000

mutations, as well as using the state where the reference prior was set to normal and the variant

prior was set to “BB”. If ≥50 mutations are present in a presence/absence mutation group the

maximum number of clusters parameter in PyClone is set to 10 for that group, and otherwise to

the number of mutations in that group divided by 5 and rounded down to the nearest integer to

avoid overclustering. All other parameters are set to default values.

Post-processing clusters. CONIPHER finally interrogates the clusters inferred by

PyClone to check whether mutation clusters were driven by heterogeneous copy number

events. First, mutations that have low PhyloCCF values, or are absent, in one or more samples

are investigated to identify whether these could be driven by copy number loss events, as

previously described3. Specifically, a statistical test is carried out to evaluate whether copy

https://paperpile.com/c/EcoX4l/92BDq
https://paperpile.com/c/EcoX4l/0AUV0
https://paperpile.com/c/EcoX4l/92BDq


number loss coincides with lower PhyloCCF levels. If two copy number states only are present,

a one-sided Wilcoxon test is used. If more than two copy number states are present, a

one-sided general test of independence is performed (using the function independence_test() in

R from the “coin” package10 with default parameters). If the majority (>85%) of mutations in a

cluster are determined to be driven by a subclonal copy number loss, the cluster is removed

from further analysis.

Secondly, a cluster merging step is implemented, in which the regional subclonal copy

number correction is re-evaluated: if the initial subclonal copy number correction results in an

additional mutation cluster which would not be present without subclonal copy number

correction, then this additional cluster is considered a false mutation cluster, and thereby

merged such that no additional cluster is created.

2.2 Phylogenetic tree building: Determining cluster nesting

The CONIPHER tree building method similarly takes as input a mutation table in long format,

whereby each row describes one mutation in one sample, with an assignment of each mutation

to a cluster (Figure 4 and PROCEDURE). The tree building stage assumes mutation clustering

has already been run, by either CONIPHER or another method.

The first stage of the CONIPHER tree building stage determines the nesting possibility of

every pair of mutation clusters inferred in the clustering stage. This stage of the tree building

method returns a nesting matrix.

Computing cluster confidence intervals. CONIPHER first computes confidence

intervals summarising the distribution of the PhyloCCF values for each mutation cluster inferred

https://paperpile.com/c/EcoX4l/VUSkG


in the clustering stage (Figure 1e). By default, these are computed via bootstrap sampling of the

mutation PhyloCCF values and subsequently calculating the bootstrapped 99% upper and lower

confidence intervals. In the case of a total tumour mutation burden (TMB) of less than 5000,

5000 bootstrapping iterations are run. In the case of a total TMB > 5000, the number of

bootstrapping iterations run is the TMB value rounded up to the closest 1000.

Testing cluster distributions. Then, to test whether inferred mutation clusters have

significantly different PhyloCCF distributions from one another, the mutation PhyloCCF

distributions for each pair of clusters are compared with two one-sided Wilcoxon tests (Figure

1f). A significant difference is classified if the Wilcoxon p-value is <0.05 in either direction. The

truncal cluster is inferred as the cluster that is able to nest all other clusters. All clusters that are

not truncal are classified as subclonal mutation clusters.

Cluster clonality testing. In order to ensure that intra-tumour heterogeneity is not being

over-estimated, CONIPHER next classifies each mutation cluster as ‘absent’, ‘subclonal’ or

‘clonal’ within each tumour sample, based on whether the confidence intervals (CIs) of the

computed (bootstrapped) PhyloCCF distributions for each cluster overlap with the confidence

intervals of the truncal cluster (Figure 1f). Specifically, firstly, we classify as ‘clonal’ every cluster

in a tumour sample whose mutations have a PhyloCCF not significantly different than the

PhyloCCF of the mutations in the truncal cluster within the same tumour sample (tested using a

one-sided Wilcoxon test, p-value = 0.05). We also classify as clonal in each tumour sample

every cluster whose 95% CI of the PhyloCCF of its mutations overlaps with the 95% CI of the

PhyloCCF of the mutations in the truncal cluster, with a minimum threshold of 0.9 used for the

lower 95% CI of truncal mutations.



Secondly, we define as ‘subclonal’ every mutation cluster in a tumour sample whose

mean PhyloCCF across the corresponding mutations in that sample was strictly positive and not

clonal (i.e., the mutation cluster does not pass the previous tests).

Lastly, any remaining mutation cluster is defined as absent in a tumour sample

otherwise.

Merging clusters. If any subclonal cluster is classified as ‘clonal’ within every tumour

sample, this subclonal cluster is merged with the truncal cluster, and cluster nesting is

subsequently re-run. Additionally, CONIPHER searches for cases where subclonal copy number

correction creates an additional cluster, and (optionally) merges this cluster with its parent. This

correction is also performed in mutation clustering. Our algorithm includes this step additionally

in the tree building stage as a failsafe.

Removing genomically localised clusters. A sampling strategy is performed to test

whether the mutations within each subclonal cluster are more genomically localised than

expected based on a background distribution based on clonal mutations (defined below). In

such cases the subclonal cluster is considered to be driven by a missed subclonal copy number

event rather than being driven by a subclone expansion and is removed (Figure 1f).

Specifically, let the number of mutations observed in each subclonal cluster be ,𝑚
𝑢

where and where is the set of subclonal clusters for tree . For a subclonal𝑢 ∈ {1,  ...,  𝑆
𝑇
} 𝑆

𝑇
𝑇

cluster , of the chromosome IDs for the truncal cluster mutations are sampled without𝑢 𝑚
𝑢

replacement and the number of unique chromosome IDs summarised. This process is repeated

10,000 times to yield a background distribution, , where , for the expected𝑁
𝑖

𝑖 ∈ {1,  ...,  10000}

number of chromosomes on which subclonal cluster mutations would be expected to be𝑚
𝑢



found. Having established this background distribution, the observed number of chromosomes

covered by the subclonal cluster, , is compared to this simulated background distribution and𝑁
𝑢

determined to be significantly lower than expected by chance if (i) , where the𝑝 < 0. 01

empirical p-value is taken as , and (ii) . In such𝑝 =  
𝑖

∑ 𝟙
𝑁

𝑖
<𝑁

𝑢

/10000  (
𝑖

∑ 𝑁
𝑖

 / 10000) / 𝑁
𝑢
 >  2

cases, the subclonal cluster is removed.𝑢

2.3 Phylogenetic tree building: Determining a potential phylogenetic tree

structure

The second stage of the CONIPHER tree building method is creating a tree structure from the

nesting matrix, using an algorithm based on the established sum condition11–13 and crossing

rules12,14. Our method aims to identify the phylogenetic tree that best fits the inferred mutation

cluster nestings and is supported by the most mutations possible (Figure 1g).

To begin with, the nesting matrix is represented as a directed ancestral graph, whereby

each node corresponds to a mutation cluster, and each directed edge (u → v) indicates that

node u could be an ancestor of node v15. In order to obtain a tree from the ancestral graph, any

edges from an ancestor node u to descendent node w are ‘pruned’ if u → v → w and u → w.

This aims to remove multiple parent nodes leading to the same child node.

Following this pruning step, the resulting “test tree” is checked for any of the following

issues: (i) graph cycles and (ii) PhyloCCF values of clusters at any particular tree level

exceeding a set threshold, where we define the tree level of a cluster , where is the set𝑢 ∈ 𝐶
𝑇

𝐶
𝑇

of clusters that are nodes on the tree , as follows. Suppose the number of generations𝑇

https://paperpile.com/c/EcoX4l/0giI+BTjhI+TEUUt
https://paperpile.com/c/EcoX4l/BTjhI+uiOqE
https://paperpile.com/c/EcoX4l/7Z4jH


separating the trunk node of the tree and node is . Then we define the tree level of as .𝑢
0 

𝑢
𝑗

𝑗 𝑢
𝑗

𝑗

That is, the trunk will have tree level 0, its child will have tree level 1, etc. For issue (ii), clusters

are labelled as issue clusters if the sum of PhyloCCFs at their tree level exceeds the upper

confidence limit of the truncal cluster + a buffer set to 10% as default. If any of these issues are

identified, clusters are iteratively removed from the tree, beginning from clusters with the

smallest number of mutations to those with a higher number of mutations. For each removed

cluster, the resulting tree structure is re-tested for issues. This procedure is carried out until a

directed tree is obtained, with no issue clusters, and the result classified as the default tree.

2.4 Phylogenetic tree building: Enumerating alternative phylogenetic trees

The third stage of the phylogenetic tree building method is to identify all alternative phylogenetic

tree structures that fit the PhyloCCF distribution nestings, and subsequently rank them𝑇 ∈ 𝓣

according to how well they explain the data (Figure 1h). To do this, CONIPHER fixes the set of

clusters comprising the default tree as the final set of tree nodes and determines a subset of𝐶
𝑇

these clusters that could be moved to descend from a different parent node in the tree𝐶
𝑀

without violating the sum condition. CONIPHER enumerates all combinations of clusters in

subset and iterates through these combinations by moving the current cluster combination𝐶
𝑀

and testing for cluster issues at each iteration (as described above in Supplementary Methods

2.3, Phylogenetic tree building: Determining a potential phylogenetic tree structure). In order to

restrict the search space when the number of clusters is large, a constraint is set to move up to

five clusters simultaneously, until all potential alternative phylogenetic trees have been

identified.



CONIPHER next aims to summarise the multiple tree solutions using two methods

(Figure 1i). First, the trees are ranked based on the extent to which the evolutionary constraints

imposed by the tree structure are being violated. This is measured based on the amount of error

introduced by nesting the cluster PhyloCCF distributions. The error metric used is the Sum

Condition Error (SCE) and is computed as follows. Suppose we have a set of tumour samples 𝑆

and a set of final tree clusters . We denote the PhyloCCF of cluster in sample𝐶
𝑇

𝑢 ∈ 𝐶
𝑇

𝑖 ∈ 𝑆

as . Suppose parent cluster has children nodes . Then, the Sum Condition11 states𝐹𝑖
𝑢

𝑢 𝑣
1
,  ...,  𝑣

𝐾

that in each sample , the sum of all children PhyloCCFs is constrained by the PhyloCCF of the𝑖

parent node:

, .
𝑘 = 1

𝐾

∑ 𝐹𝑖
𝑣

𝑘 

≤ 𝐹𝑖
𝑢

∀𝑢 ∈  𝐶
𝑇
 :  𝑢 → 𝑣, 𝑣 ∈ 𝐶

𝑇
  

Hence for a particular alternative tree , suppose we have parent clusters𝑇 ∈ 𝓣 𝑢 ∈ 𝐶
𝑃

where is the set of parent nodes (i.e. all clusters which are not leaf nodes). Then,𝐶
𝑃
 ⊂ 𝐶

𝑇 
 

defining as the sum of PhyloCCF values of all children of cluster in𝐹𝑖
𝑢,𝑘

 : =
𝑘 = 1

𝐾

∑ 𝐹𝑖
𝑣

𝑘 

𝐹 𝑣
𝑘 

𝑢

sample , we compute the sum condition error as the average amount that the sum condition is𝑖 

violated across all parent clusters across all tumour samples .𝑢 ∈ 𝐶
𝑃 

𝑖 ∈ 𝑆

𝑆𝐶𝐸 =  1
|𝑆|

1
|𝐶

𝑃
|

𝑢 ∈𝐶
𝑃

∑
𝑖 ∈𝑆
∑ 𝟙

𝐹𝑖
𝑢
 < 𝐹

𝑖

𝑢, 𝑘

(𝐹𝑖
𝑢,𝑘

−  𝐹𝑖
𝑢
)

For each tumour case, the SCE score is computed for all alternative phylogenetic trees,

and ranked from lowest error to highest error. The tree generating the lowest SCE is ranked as

the tree that fits the data best.

https://paperpile.com/c/EcoX4l/0giI


CONIPHER additionally computes a second metric summarising the solution space of

potential alternative phylogenies: the edge probability score. This metric returns a probability

score of each alternative tree, based on the total probability of all the edges comprising(𝑢 → 𝑣)

that tree. Specifically, to determine the probability of parent node leading to child node , we𝑢 𝑣

compute the empirical probability, , of each edge across all alternative trees :𝑒
𝑣

(𝑢 → 𝑣) 𝑇 ∈ 𝓣

𝑒
𝑣
 = 1

|𝓣|  
𝓣
∑ 𝟙

(𝑢 →𝑣)

can be interpreted as the fraction of alternative trees containing that edge. Then, to𝑒
𝑣

summarise the total edge probability score for each alternative tree , CONIPHER𝑇 ∈ 𝓣

calculates the log product of the edge probabilities of the edges comprising that tree, weighted

by the number of mutations on that edge. Specifically, suppose cluster is supported by𝑣 ∈ 𝐶
𝑇

mutations. Then the edge probability score, , for tree is calculated as follows:𝑚
𝑣 

𝐿 𝑇 ∈ 𝓣

.𝐿
𝑇
 =  

𝑣 ∈𝐶
𝑇

∑ 𝑚
𝑣
𝑙𝑜𝑔(𝑒

𝑣
)

For each tumour case, the edge probability score is computed for all alternative

phylogenetic trees, and a rank is produced, from highest to lowest edge probability. The tree

generating the highest edge probability is interpreted as the tree that summarises the solution

space the best.

2.5 Phylogenetic tree building: Estimating clone proportions

Subclone proportions within each tumour sample are automatically generated by CONIPHER

(Figure 1j). This computation is performed using a top-down approach. Firstly, all mutation

clusters that have been classified as ‘clonal’ within a particular tumour sample (as described in



Supplementary Methods 2.2, Phylogenetic tree building: Determining cluster nesting) are

assigned to have a PhyloCCF = 100 within this sample. Then, the subclone proportions are

computed for each tumour sample independently, in a top-down manner as follows. Beginning

at the truncal cluster and iterating through parent nodes, ordered by tree level, we compute the

clone proportion of the current parent node in sample as the difference in PhyloCCF values𝑢 𝑖

(mean mutation PhyloCCF per cluster) between the sum of all child clusters and the current

parent node: . If the sum condition is violated, children PhyloCCF values are𝐹𝑖
𝑢
 −

𝑘 = 1

𝐾

∑ 𝐹𝑖
𝑣

𝑘 

rescaled to sum exactly to the PhyloCCF of the parent node. This procedure is repeated from

the trunk to the leaf nodes of the tree, within each tumour sample, until all subclone proportions

are determined.

3. Exploring removed clusters in the TRACERx421 cohort

To explore whether our removal of genomically clustered clones in the CONIPHER clustering

step led to an enrichment for removal of hypermutation events, we investigated the trinucleotide

context of the mutations in the reconstructed tumour phylogenetic trees in the TRACERx421

primary NSCLC cohort1 (n = 403 trees) that fall within one of the following 4 groups, (1) kept

truncal mutations (nmut = 195377), (2) kept subclonal mutations (nmut = 107537), (3) excluded

mutations in copy number driven clusters (genomically localised clusters) (nmut = 1695), and (4)

excluded mutations in tree removed clusters (nmut = 7345) (Supplementary Figure 1a, b). We ran

deconstructSigs16 on each of these groups in order to deconvolve the mutational signatures

explaining the mutational profiles in each group (Supplementary Figure 1c). Additionally,

deconstructSigs was run on kept truncal mutations individually for each tumour in the

TRACERx421 primary cohort of phylogenetic trees (n=403), and the mean signature weights

output across all tumours was computed. We observed that the mutations excluded as part of

https://paperpile.com/c/EcoX4l/INnd
https://paperpile.com/c/EcoX4l/948yT


copy number removed clusters exhibited a mutational signature distribution that reflected that of

the kept truncal mutations, indicating that these clusters likely reflect truncal mutations in a

genomic region subject to a missed subclonal copy number event.

4. Benchmarking the performance of CONIPHER using

simulations

To assess the performance of CONIPHER, we used a simulation framework and simulated

datasets introduced within the TRACERx 421 study1. The TRACERx simulation framework was

introduced to model the evolution of somatic SNVs, as well as the evolution of other frequent

genetic alterations, such as truncal/subclonal somatic copy number alterations (SCNAs

including gains, losses, copy-neutral losses of heterozygosity (LOHs), etc.) and

truncal/subclonal whole genome duplications (WGDs)17. Importantly, the framework specifically

models the interactions between these different events, allowing us to model complex but

frequent evolutionary events such as SNVs with different mutation multiplicities (i.e. number of

copies of a SNV within the same cancer cells) or mutation losses (i.e. SNVs that are deleted as

a result of deletions affecting the mutant allele). Moreover, the simulations were generated

based on the parameters of the TRACERx sequencing cohort, thus representing a simulated

cohort grounded in biological reality. Overall, the TRACERx simulation framework is composed

of four steps, briefly summarised below, and is publicly available in GitHub at

https://github.com/zaccaria-lab/TRACERx_simulation_tool.

https://paperpile.com/c/EcoX4l/INnd
https://paperpile.com/c/EcoX4l/KGGk
https://github.com/zaccaria-lab/TRACERx_simulation_tool


4.1 The TRACERx simulation framework of tumour evolution

The first step is the simulation of the topology of a tumour phylogenetic tree with a𝑇 = (𝑉,  𝐸)

fixed number of tumour clones, which has been sampled from , ,𝑛 =  |𝑉| {8,  ...,  16} {12,  ...,  24}

and for the low (2-3 samples), medium (4-7 samples) and high (> 7 samples) sample{22,  ...,  30}

groups respectively. Specifically, a random tree topology is simulated by randomly and

iteratively pruning a full rooted binary tree with leaves until it only contains nodes. In such a𝑛 𝑛

resulting tree, the root represents the most recent common ancestor (MRCA) of the tumour and

an additional node is added and linked to the root through an edge defined as the trunk to

represent the normal diploid germline ancestor.

The second step is the simulation of SNVs and SCNAs to label the evolutionary

branches of the simulated tree , whose numbers have been sampled from the corresponding𝑇

distributions within the TRACERx421 sequencing cohort of 421 primary NSCLCs. According to

these numbers, SNVs are thus assigned to the edges of by preserving the chosen proportions𝑇

of truncal vs subclonal mutations. Similarly, SCNAs are also assigned to the edges of and𝑇

randomly assigned to one random allele. Based on previous models of SCNA evolution18, we

model SCNAs such that each copy-number gain increases by one copy of one or both allele(s)

of the corresponding locus, whereas copy-number deletions decrease the copies by one and,

when reaching zero copies, they result in an irreversible state of LOH. Moreover, we model

each WGD as an event that doubles the copy number of every allele present at one or more

copies. Overall, we model the most frequent copy number states observed in previous

pan-cancer sequencing studies8, including allele-specific copy numbers

for gains and for deletions. Note that each copy{2,  1},  {3,  1},  {4,  1},  {3,  2},  {4,  2} {1,  0},  {2,  0}

number event can affect the multiplicity of SNVs when the event is assigned to the same allele

harbouring the SNV. Moreover, SNVs and SCNAs are assigned in order to respect two of the

https://paperpile.com/c/EcoX4l/f2fFi
https://paperpile.com/c/EcoX4l/P2NKZ


most common evolutionary assumptions used in existing methods: (1) the infinite sites

assumption, so that every SNV occurs only once in tumour evolution, and (2) the constant

mutation multiplicity assumption, so that every SNV has the same mutation multiplicity across

different tumour clones. Lastly, the order in which the events are applied is randomly chosen to

simulate SNVs occurring both before and after SCNAs and WGDs.

The third step is the simulation of bulk tumour samples by mixing different subsets of the

tumour clones among those generated in . Specifically, we model each sample as a mixture of𝑇

normal diploid cells and cancer cells belonging to randomly selected tumour𝑛̂ ∈ {3, ...,  8}

clones. We model the mixture of normal and cancer cells in each generated sample by defining

the tumour purity as the fraction of tumour cells within the sample and we represent theµ∈[0,  1]

clone proportion of every clone as the fraction of cancer cells that belong to tumour𝑢
𝑖
∈[0,  1] 𝑖

clone from . As such, we simulate a bulk tumour sample that is composed of normal𝑖 𝑇 1 − µ

diploid cells and tumour cells obtained from tumour clones chosen uniformly at random suchµ 𝑛̂

that . While the number of tumour samples and the tumour purity of eachΣ
𝑖∈{1, ..., 𝑛̂}

 𝑢
𝑖
 =  1 𝑘 µ

sample are sampled from the TRACERx distributions, we sample the clone proportions 𝑢
1
,  ...,  𝑢

𝑛̂

as values drawn from a Dirichlet distribution with uniform concentration parameters, i.e.,

, as done in previous studies18,19.𝑢
1
,  ...,  𝑢

𝑛̂
 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(1

→
)

The last step is the simulation of DNA sequencing data for the generated bulk samples.

For every genomic locus from every bulk tumour sample , we aim to simulate the total𝑝 𝑠

number of sequencing reads and the number of variant reads . First, as in𝑡
𝑝, 𝑠

∈𝑁 𝑣
𝑝, 𝑠

 ∈ 𝑁

previous cancer sequencing studies19, we model as a Poisson distribution based on the𝑡
𝑝, 𝑠

expected total number of reads, which corresponds to where is the fractional copy
𝑓

𝑝, 𝑠

ρ
𝑠

 γ
𝑠

𝑓
𝑝, 𝑠
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number (the average total copy number of across all cells present in , i.e.,𝑝 𝑠

for the allele-specific copy numbers ), where ploidy𝑓
𝑝, 𝑠

=
𝑖∈{1, ..., 𝑛̂}

∑ 𝑢
𝑖 
(𝑥

𝑖, 𝑝
+ 𝑦

𝑖, 𝑝
) 𝑥

𝑖, 𝑝
,  𝑦

𝑖, 𝑝

is the tumour sample ploidy (i.e., the average fractional copy numberρ
𝑠

= 1
𝑚  

𝑝∈{1, ..., 𝑚}
∑ 𝑓

𝑝, 𝑠

across all cells in the sample), and where is the sequencing coverage (sampled fromγ
𝑠

TRACERx cohort distributions). As such, is drawn from a Poisson distribution with the mean𝑡
𝑝, 𝑠

equal to the expected total number of reads, i.e. Second, is modelled𝑡
𝑝, 𝑠

 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(
𝑓

𝑝, 𝑠

ρ
𝑠

 γ
𝑠
). 𝑣

𝑝, 𝑠

as a Binomial distribution based on previous studies3,19,20. We defined the expected value of the

observed VAF, , i.e., , as , where represent theψ
𝑝, 𝑠

𝑣
𝑝, 𝑠

𝑡
𝑝, 𝑠

ψ
𝑝, 𝑠

= 𝑖∈{1, ..., 𝑛̂}
∑ 𝑢

𝑖, 𝑠
 𝑧

𝑖, 𝑝

𝑖∈{1, ..., 𝑛̂}
∑ 𝑢

𝑖, 𝑠
 (𝑥

𝑖, 𝑝
+ 𝑦

𝑖, 𝑝
)

𝑥
𝑖, 𝑝

,  𝑦
𝑖,𝑝

∈ 𝑁

allele-specific copy numbers of the genomic locus in tumour clone and represents the𝑝 𝑖 𝑧
𝑖, 𝑝

∈ 𝑁

mutation multiplicity, or number of copies of the locus harbouring an SNV. Therefore, is𝑣
𝑝, 𝑠

drawn from a Binomial distribution with number of trials equal to and with probability of𝑡
𝑝, 𝑠

success equal to , i.e., Additionally, noisy and artifactualψ
𝑝, 𝑠

𝑣
𝑝, 𝑠

 ~  𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑡
𝑝, 𝑠

,  ψ
𝑝, 𝑠

).

mutations are simulated by generating groups of SNVs with computed using randomlyψ
𝑝, 𝑠

chosen values of clone proportions in each simulated tumour sample.𝑢
1
,  ...,  𝑢

𝑛̂

Additional details are reported in the TRACERx study1.

4.2 Simulated datasets generated to benchmark CONIPHER

For the purposes of this manuscript, three collections of the ground truth simulations described

were generated for benchmarking analysis, the first 2 datasets comprised 150 simulated

https://paperpile.com/c/EcoX4l/92BDq+THTpL+J9zly
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tumours: the first collection (simulated dataset 1) includes simulated sequencing error and

mutation loss1 as described above; the second collection (simulated dataset 2) is generated in

the same way, except is error-free and enforces no mutation loss. The final dataset (simulated

dataset 3) comprised 36 simulations (9 simulations each with coverage values of 50x, 100x,

200x, 400x), generated with noise and mutation loss as in simulated dataset 1. The vast

majority of the benchmarking analysis has been carried out using simulated dataset 1. For

simulated dataset 2, we ran the CONIPHER tree building stage on the ground truth clusters, in

order to benchmark the performance of the tree reconstruction only. simulated dataset 3 was

used to validate the accuracy of CONIPHER using tumours simulated with a lower sequencing

coverage or purity.

Assessing the identification of mutation clusters. For each considered method, we

assessed the performance of correctly identifying mutation clusters (Figure 2a). We used the

standard adjusted rand index (ARI) to evaluate the accuracy of the inferred mutation clusters

compared to the simulated ground truth (the minimum value is 0, which is expected in the case

of random cluster assignments, and the maximum value is 1). Note that ARI values capture both

erroneous mutations that are in the same ground truth cluster but have been separated in

different inferred clusters, as well as mutations in different ground truth clusters that have been

identified in the same inferred cluster.

Assessing the reconstruction of tumour phylogenetic trees. For each method, we also

assessed the performance of reconstructing the correct evolutionary history of all identified

somatic mutations (Figure 2b). To evaluate the identification of the correct ancestral

relationships between every pair of mutations, we computed the mutation descendant accuracy

similar to previous studies11,21.

https://paperpile.com/c/EcoX4l/INnd
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4.3 Validating performance of CONIPHER with varying sequencing

coverage and purity

We used simulated dataset 3 to assess the performance of CONIPHER with varying sequencing

coverage. We compared the tumour-effective sequencing coverage with the mutation clustering

ARI using simulated dataset 3, whereby the tumour-effective sequencing coverage was

computed as the product of sequencing coverage and tumour purity. Overall we found that the

performance of CONIPHER was only affected when considering relatively low sequencing

coverage and tumour purity (Supplementary Figure 2a). Specifically, we observe that when the

effective sequencing coverage is <50x the clustering is less reliable. We note that since

CONIPHER uses the PyClone algorithm in its mutation clustering step, the effect of sequencing

coverage and tumour purity will be highly dependent on the probabilistic method of PyClone;

further details on appropriate sequencing coverage and purity thresholds required to produce

successful mutation clustering can be found in the Pyclone manuscript6,22. Also, we observed

that the mutation descendant accuracy did not decrease with lower tumour-effective sequencing

coverage on the same simulated dataset. We concluded that CONIPHER’s performance is

robust when analysing datasets with >50x effective coverage.

4. 4 Benchmarking alternative tree ranking using simulations

We used the ground truth simulations to assess whether the tree ranking implemented in

CONIPHER allows the identification of the ground truth tree as a high-rank solution. simulated

datasets 1 and 2 were used in this analysis, in which N=138 and N=150 simulated tumour cases

had multiple potential phylogenetic trees, for simulated datasets 1 and 2, respectively.

We first calculated the mutation descendant accuracy of all potential alternative tree

https://paperpile.com/c/EcoX4l/0AUV0+ljm9O


structures (simulated dataset 1) inferred by CONIPHER. We found that the reconstructed

alternative trees with the highest mutation descendant accuracy had lower SCE scores

compared to less accurate alternative phylogenetic trees (Supplementary Figure 3a).

Then, we ran the CONIPHER tree building stage on a dataset with no mutation loss

or injected erroneous mutations (simulated dataset 2). For each tumour case, for each

unique parent-child edge inferred across any of the alternative trees, we evaluated the

fraction of alternative trees in which this edge was predicted to occur, and took this as the

empirical probability of this tree edge. We observed that the tree edges that were present

in the ground truth tree had a higher edge probability across alternative trees inferred by

CONIPHER, than incorrectly inferred edges (Supplementary Figure 3b).

To determine whether the alternative phylogenetic trees with the best metric scores (i.e.

the trees obtaining the lowest SCE and highest edge probability scores) had a higher accuracy

than alternative phylogenies, we performed the following test. For each simulated tumour case

(simulated dataset 1), we computed the rank of each alternative tree based on its ground truth

mutation descendant accuracy, as a percentage of all alternative trees. We then compared the

mean tree accuracy ranking of the set of trees that obtained the best metric scores, with the

mean tree accuracy ranking of the set of alternative trees using a paired, two-sided Wilcoxon

test (Supplementary Figure 3c). We observed that the default tree, the trees with highest edge

probability and the trees with lowest SCE overall had a higher tree accuracy ranking than the

average of all alternatives.



5. Benchmarking CONIPHER on sequencing data

We compared the mutation clustering output (Supplementary Figure 4a) and reconstructed

tumour phylogenetic trees (Supplementary Figure 4b) of CONIPHER with CITUP23, LICHeE15

and Pairtree24 on CRUK0063, a NSCLC dataset from the TRACERx421 cohort comprising five

samples from the primary tumour, one metastatic lymph node sample and one sample taken at

disease recurrence2.

From this case, we found that CONIPHER provided the most realistic reconstruction of

tumour evolutionary history. CITUP and LICHeE produced the most similar clustering to

CONIPHER, however Pairtree obtained a very different mutation cluster set (Supplementary

Figure 4a). In particular, Pairtree assigned many clusters to the truncal cluster, which were

consistently assigned to be subclonal in CONIPHER, CITUP and LICHeE. Note that, while

Pairtree results might be partially due to the default clustering algorithm used by Pairtree and

the use of different clustering methods might vary the results25, the performance of all methods

were assessed using default parameters. Accordingly, the Pairtree phylogenetic tree was

inferred as a linear phylogeny (Supplementary Figure 4b). LICHeE did not assign any mutation

cluster to the trunk of the phylogenetic tree and inferred multiple subclonal clusters to descend

from a germline node (Supplementary Figure 4b). CITUP inferred a phylogenetic tree structure

most similar to CONIPHER (Supplementary Figure 4b), however CITUP was only able to

identify a limited number of mutation clusters, in contrast to what was suggested from the

mutation frequencies (Supplementary Figure 4c). For example, the mutations assigned to

cluster 6 in CITUP (left side of panel), were separated into clusters 6, 12 and 23 by CONIPHER.

This can be explained due to the presence of cluster 12 in sample CRUK0063_SU_T1.R5

(versus absence of clusters 6 and 23), and the different PhyloCCF values of clusters 6 and 23 in

https://paperpile.com/c/EcoX4l/zJWK8
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sample CRUK0063_SU_T1.R4. Also, some mutations assigned to cluster 1 in CITUP were

separated to a distinct cluster 18 by CONIPHER, which was estimated to have mean

PhyloCCF=0.44 in the lymph node metastasis sample CRUK0063_SU_FLN1, compared to

cluster 1 (mean PhyloCCF=1.03). Two mutations assigned to cluster 1 by CITUP were assigned

to cluster 2 by CONIPHER, as these were separated from cluster 1 due to presence in sample

CRUK0063_SU_T1.R3.



Supplementary Note

1. Considering patients input to CONIPHER with multiple

genomically distinct tumours

The CONIPHER clustering and tree building algorithm assumes that all input mutation data is

from one genomically related tumour. If it is suspected that the input data contains mutations

from multiple genomically independent tumours from a single patient, then it is recommended to

run the processing steps detailed in our companion manuscript1. In brief, if there exist ≥ 10

mutations that have a VAF in all tumour samples, the samples are deemed genomically> 1%

related. If mutations have a VAF in all tumour samples, samples are clustered into< 10 > 1%

two groups based on the mutation VAFs, and this procedure is repeated within sample groups to

identify the final sets of samples that are genomically related.

2. Exploring mutations removed during the CONIPHER

PROCEDURE

The CONIPHER tree building step returns information on removed mutations (see

PROCEDURE) that includes mutations removed during CONIPHER tree building as part of copy

number driven clusters or tree removed clusters. These data can be used to easily query the

phylogenetic tree produced from the set of mutations input to CONIPHER. In our companion

TRACERx study1, we have found it to be rare that driver mutations are removed during this

stage. However, in the rare case driver mutations are removed, we advise manual review of

VAFs and inspection to determine whether these could conceivably reflect parallel evolution.

https://paperpile.com/c/EcoX4l/INnd
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3. Additional output data

During the protocol, CONIPHER creates additional files (some specifically for downstream

analysis in R) that can be read in by the user, if desired. These are detailed below. Other output

not mentioned below includes intermediary files produced that are not required for downstream

phylogenetic analysis and can be ignored.

! CRITICAL. The following output files described are non-essential and only supplemental to the

main output described in the PROCEDURE section of the manuscript.

Clustering step
● <CASE_ID>.all.SNV.cpn.xls. This is a table giving information about the mutation

copy number of each mutation of the tumour. Each row is a new mutation. Tumour

sample-specific information is found in columns that begin with <SAMPLE>.*.

● <CASE_ID>.SCoutput.DIRTY.tsv. This is a mutation table in the same format

as the files <CASE_ID>.SCoutput.FULL.tsv and

<CASE_ID>.SCoutput.CLEAN.tsv described in PROCEDURE, except restricting

to mutations removed, and hence deemed ‘dirty’, during CONIPHER clustering.

Tree building step
● tree.RDS. This is an R list object combining all tree building output for this tumour. The

most important list elements are described below. These objects can be used for

phylogenetic analysis in R.

- tree$ccf_table_pyclone_clean is a mutation table with one row per mutation,

and columns describing the PhyloCCF of each mutation in each tumour sample. Column



PycloneCluster indicates the cluster this mutation was assigned to, after mutation

clustering and tree building. If this cluster was merged with another cluster, the final

cluster name is indicated in this table.

- tree$merged_clusters is a list of pairs of clusters that were merged during tree

building.

- tree$cpn_removed_clusters and tree$tree_removed_clusters are vectors

listing the clusters removed during tree building due to subclonal copy number

alterations and mutational errors, respectively.

- tree$graph_pyclone is itself a list of objects related to the inferred phylogenetic tree

structure. Specifically, tree$graph_pyclone$Corrected_tree is a matrix of the

tree structure of the default tree, and tree$graph_pyclone$alt_trees is a list of

all potential tree structures, as shown in the worked example in the manuscript, patient

CRUK00632. Alternative tree 1 is always the default tree.

- tree$nested_pyclone is itself a list describing output from the cluster nesting stages

of the tree building step (Figure 1) listing the clusters removed during tree building due to

subclonal copy number alterations and mutational errors, respectively.

- tree$nested_pyclone$ccf_cluster_table is a matrix containing the

mean PhyloCCF of each cluster (rows) within each tumour sample (columns).

The row names indicate the cluster ID.

- tree$nested_pyclone$ccf_ci_lower and

tree$nested_pyclone$ccf_ci_upper are matrices in the same format as

tree$nested_pyclone$ccf_cluster_table with values of the upper and

lower confidence intervals for the PhyloCCF values of each cluster in each

tumour sample.

https://paperpile.com/c/EcoX4l/GjLf


- tree$clonality_table_corrected is a matrix in the same format as

tree$nested_pyclone$ccf_cluster_table containing one of the following

values: absent, if the mutation cluster (row) is absent in that tumour sample (column);

subclonal, if that mutation cluster is significantly different from the truncal cluster in

that tumour sample; or clonal, if that mutation cluster is not significantly different from

the truncal cluster in that tumour sample.

- tree$graph_pyclone is itself a list describing the phylogenetic tree structure inferred

from the tree building step.

- tree$graph_pyclone$Corrected_tree describes the default tree output;

tree$graph_pyclone$highest_log_edge_probability_tree is a list

of the alternative trees with highest edge probability;

tree$graph_pyclone$lowest_sce is a list of the alternative trees with the

lowest SCE; and tree$graph_pyclone$alt_trees is a list of all alternative

phylogenetic trees found by the tree building algorithm (Overview of the

CONIPHER method and Supplementary Methods 2.4). The first column is the

parental node; the second column is the child node. Example CRUK0063 is

indicated below.

tree$graph_pyclone$alt_trees

[[1]]

i

[1,] "2" "1"

[2,] "8" "3"

[3,] "21" "4"

…

[[2]]

i

6 "2" "8"



14 "8" "21"

…

- tree$clone_proportion_out is itself a list describing estimated clone proportions

of each subclone in each tumour sample.

- tree$clone_proportion_out$clone_proportion_table is a matrix in

the same format as tree$nested_pyclone$ccf_cluster_table with

dimensions (number of clusters x number of tumour samples). Entries of the

matrix are estimated clone proportions of the subclone relating to that mutation

cluster in that tumour sample. This is computed from the default tree.

- tree$clone_proportion_out$clone_proportions_min_sce_trees is

a named list of clone proportion tables computed from the tree(s) with lowest

SCE. The names of the list elements indicate the names of the alternative trees

with lowest SCE.

- tree$subclonal_expansion_score_out is itself a list describing estimated

subclonal expansion score in each tumour sample.

- tree$subclone_expansion_score_out$subclonal_exp_score is a

data frame describing the subclonal expansion score for each tumour sample,

computed from the default tree.

- tree$subclone_expansion_score_out$subclonal_exp_score_min_

sce_trees is a named list of subclonal expansion score dataframes computed

from the tree(s) with lowest SCE. The names of the list elements indicate the

names of the alternative trees with lowest SCE.



4. Expected run time

Supplementary Table 1 shows average measures of run time for CONIPHER clustering and tree

building run on the simulated dataset 1 (Supplementary Methods 4).

Run Time

Minutes Hours

mean min max mean min max

Group Method

Low Clustering 45.7 9.2 251.6 0.76 0.15 4.20

Tree
building

0.7 0.2 4.6 0.01 0.004 0.08

Medium Clustering 80.6 16.0 356.9 1.34 0.27 5.95

Tree
building

2.4 0.4 14.4 0.04 0.007 0.24

High Clustering 121.9 27.9 336.5 2.03 0.46 5.61

Tree
building

5.7 1.0 29.9 0.10 0.02 0.50

Supplementary Table 1. Mean, minimum and maximum run time of CONIPHER clustering and tree
building steps run on the simulated dataset 1 used to benchmark the performance of our method.



Supplementary Figures

Supplementary Figure 1. Removed mutations during CONIPHER tree building in the
TRACERx421 primary NSCLC cohort. a. Total number of mutations in the TRACERx421
NSCLC primary cohort that were either kept or excluded from phylogenetic tree building.
Mutations are separated into the following mutation groups: kept truncal mutations,
mutations removed in copy number-driven clusters, mutations in clusters removed from the
tree, and kept subclonal mutations. b. Single-base substitution (SBS) mutational profiles,
as reported using COSMIC (v.3.2)26 of the aforementioned groups. Columns show the
trinucleotide contexts, rows show the mutation groups. c. Signature weights for each
mutational signature, as output from deconstructSigs16, for each of the mutation groups in
a. and the mean signature weights of truncal mutations across all tumours in the
TRACERx421 cohort.
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Supplementary Figure 2. CONIPHER performance with varying sequencing coverage. The
performance of CONIPHER was measured with varying tumour purity and with varying
sequencing coverage (simulated dataset 3). The tumour-effective sequencing coverage is
computed as the product of the sequencing coverage and tumour purity. The tumour-effective
sequencing coverage is compared with a. Mutation Clustering ARI, which measures the
accuracy in the identification of mutation clusters for CONIPHER, and b. Mutation Descendant
Accuracy, which measures the accuracy of CONIPHER in identifying the correct
ancestor-descendant relationship between pairs of mutations.



Supplementary Figure 3. Validating the CONIPHER method of ranking alternative
phylogenies. a. Comparing the mean SCE between trees with highest mutation descendant
accuracy with the mean SCE for alternative trees (simulated dataset 1). b. Comparing empirical
edge probabilities between CONIPHER-inferred tree edges that were present in the ground
truth tree with edges not present in the ground truth tree (simulated dataset 2). c. Comparing
mean tree accuracy ranking between trees selected with metrics: default tree, tree with lowest
sum condition error and tree with highest edge probability; and alternative trees (simulated
dataset 1).





Supplementary Figure 4. Clustering and tree building method comparison on
TRACERx case CRUK0063. a. Alluvial plot of inferred mutation clusters and b. Inferred
phylogenetic trees of TRACERx421 case CRUK00631,2 from CONIPHER, CITUP23,
LICHeE15, and Pairtree24. Each mutation cluster is labelled and coloured according to the
corresponding CONIPHER cluster with the largest number of mutations overlapping that
cluster. The final two clusters are those removed during the CONIPHER clustering step
(rm_cl) and tree building step (rm_tree). c. Examples of the PhyloCCF of mutations
assigned to CITUP cluster 6 (left two panels) and CITUP cluster 1 (right two panels). Each
point represents one mutation and is coloured by the CONIPHER cluster assignment for
that mutation.
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