Protocol

Check for updates

A general protocol for precise syntheses of ordered mesoporous intermetallic nanoparticles

In the format provided by the authors and unedited

A general protocol for precise syntheses of ordered mesoporous intermetallic nanoparticles

Hao Lv,¹ Yanzhi Wang,¹ Lizhi Sun,¹ Yusuke Yamauchi,^{2,3} and Ben Liu^{1*}

¹Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China. E-mail: ben.liu@scu.edu.cn
²Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
³JST-ERATO Yamauchi Materials Space-Tectonics Project, International Research Centre for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1
Namiki, Tsukuba, Ibaraki 305-0044, Japan

Figure S1 I (a) Soft-templating method and (b) hard-templating method for the syntheses of mesoporous nanomaterials.

Figure S2 I TEM images of (a, b) KIT-6 and (c, d) SBA-15. Images adapted with permission from ref

Figure S3 I The schematic procedures of the concurrent templates toward the syntheses of the mesoporous intermetallic nanoparticles of (a) *meso-i*-Pt₁Sn_{1(SBA-15)}, (b) *h-meso-i*-Pt₁Sn₁, (c) *meso-i*-PtZnCo and (d) *meso-i*-Pd₂B.

Figure S4 I TEM images of *meso-i*-Pt₁Sn₁ nanoparticles with a nanoparticle size of (a) 121 nm, (b) 164 nm, and (c) 208 nm. Images adapted with permission from ref 42.

Figure S5 I STEM EDS mapping images of *meso-i*-PtP₂, *meso-i*-PtS₂, *meso-i*-PtSe₂ and *meso-i*-PtTe₂. Images adapted with permission from ref 73.

Figure S6 I STEM/TEM and STEM EDX images of (a,b) meso-i-Pt₁Sn₁, (c,d) meso-i-Pt₃Sn₁, and (e-h) meso-Pt nanoparticles after catalysis. All the nanoparticles retained their structure/morphology and composition, indicating a good catalytic stability. Images adapted with permission from ref 42.

Figure S7 I PXRD patterns of *meso-*Pt, *meso-i-*Pt₃Sn₁, and *meso-i-*Pt₁Sn₁ nanoparticles after catalytic stability tests. All samples retained PXRD peaks well, indicating they are chemically stable for catalysis. Images adapted with permission from ref 42.

Figure S8 I EDS mapping images of *meso-i*-PtZnCo after the (a) 5000, (b) 10000, (c) 30000, (d) 50000 CV cycles. Images adapted with permission from ref 70.

Figure S9 I TEM images of Commercial Pt/C after the (a) 1, (b) 5000, (c) 10000, (d) 20000 CV cycles. Images adapted with permission from ref 70.

Table S1 I Comparisons of the advantages and limitations of soft-templating, hard-templating, andconcurrent template methods for the syntheses of mesoporous materials.

Method	Advantage	Limitation
Soft- templating method	Controllable mesoporous structures/ morphologies	 Low thermal stability of soft templates; Collapse of porous frameworks during the crystallization and removal of soft-template
Hard- templating method	A reliable strategy for most of crystalline oxides and sulfides, and single metals	 Less adjustable of pore sizes and structures; Inevitable nucleation at outside of pores, thus low yield; High-cost and complicated preparation
Concurrent template method	 A reliable syntheses of thermally stable metal alloys with high orderliness and crystallinity; Easy to control elemental compositions 	 Less adjustable of pore sizes and structures; High-cost and complicated preparation