Protocol

Check for updates

A systems-level mass spectrometry-based technique for accurate and sensitive quantification of the RNA cap epitranscriptome

In the format provided by the authors and unedited

Supplementary Information for:

CapQuant: A systems-level mass spectrometry-based technique for accurate

and sensitive quantification of the RNA cap epitranscriptome

Jin Wang, Bing Liang Alvin Chew, Yong Lai, Hongping Dong, Luang Xu, Yu Liu, Xin-Yuan Fu,

Zhenguo Lin, Pei-Yong Shi, Timothy K. Lu, Dahai Luo, Samie R. Jaffrey and Peter C. Dedon

Contents

Supplementary Methods: Enzymatic release, purification, and characterization of cap dinucleotides

Supplementary Figures

Figure 1: HPLC purification of ¹⁵N₅-m⁷GpppAm from the nuclease P1 digest of ¹⁵N₅-m⁷GpppAmcapped RNA

Figure 2: Characterization of synthetic ¹⁵N₅-m⁷GpppAm and m⁷GpppAm by LC-MS analysis

Figure 3: MS/MS spectra of unlabeled cap nucleotides with assignments

Figure 4: Selective ion-chromatograms for monitoring MRM transitions for cap nucleotides

Figure 5: Calibration curves for the quantification of cap nucleotides

Supplementary Methods

Enzymatic release, purification, and characterization of synthetic cap dinucleotides

• Timing ~3 d

Procedure:

1. Digest the synthetic capped RNA oligo by incubating it in a 50 μ l or 100 μ l solution containing 2 units of nuclease P1, 30 mM sodium acetate pH 5.5, and 1 mM ZnCl₂ at 37 °C for 1 h.

2. Add equal volume of ice-cold chloroform:isoamyl alcohol 24:1 (v/v) to the above digestion mixture and vortex vigorously for 1 min. Centrifuge at 10,000g for 8 min at 4 °C and transfer the supernatant to a new 1.5-ml tube. Top up the supernatant to 100 μ l by addition of ice-cold Milli-Q water.

3. Inject ~100 μ l of the supernatant to a HPLC system and purify the resulting cap dinucleotides by ionpairing HPLC on a 4.6 mm×250 mm Alltima HP C18 column (5 μ m in particle size, Hichrom). Collect the fractions representing peaks eluting after 5'-AMP in 1.5-ml microcentrifuge tubes. See **Supplementary Figure 1** as an example.

4. Concentrate the individual fractions in a Speed-vac concentrator, which is operated with temperature uncontrolled, to dryness. Reconstitute in ~0.5 ml of ice-cold acetonitrile:water 3:7 (v/v) and concentrate again. Repeat the process three times. Reconstitute in 50 μ l of Milli-Q water. Take out 5 μ l, add 45 μ l of Milli-Q water and mix well.

5. Inject 2-20 μ l of the diluted fractions to a HPLC system coupled with a Triple quad mass spectrometer for analysis in multiple reaction monitoring (MRM) mode. The instrument conditions are configured as noted in the table below, which shows MRM transitions for ¹⁵N₅-m⁷GpppAm. See **Supplementary Figure 2A** as an example.

LC part		MS part	
Inject volume	2-20 µl	Positive mode	MRM scan
Flow rate	0.2 mL/min	Gas temperature	350 °C
Column temperature	25°C	Gas flow	11 l/min
Mobile phase A	8 mM NH4HCO3 pH 7.0	Nebulizer	20 psi
Mobile phase B	Methanol	Sheath gas temperature	300 °C
Time/min	Percentage of B/%	Sheath gas flow	12 l/min
0	0	Capillary voltage	1.8 kV
5	0	Nozzle voltage	2 kV
15	40	Fragmentor voltage	135 V
15.1	0	ΔΕΜV	400 V
22	0	Collision energy	30 V
		MRM precursor ion (¹⁵ N ₅ -m ⁷ GpppAm)	806
		MRM product ions (¹⁵ N ₅ -m ⁷ GpppAm)	171, 136

6. Determine the fragmentation pattern of the purified unlabeled cap dinucleotides that exhibited expected MRM transitions on a HPLC system coupled with a Triple quadrupole mass spectrometer in product ion scan mode. See the results in **Supplementary Figure 2C** and **Supplementary Figure 3**.

7. Confirm the identity of the purified unlabeled cap dinucleotides by high-resolution mass analysis on a Quadrupole time-of-flight mass spectrometer. See **Supplementary Figure 2B** as an example.

8. For each cap dinucleotide, prepare a mixture of the unlabeled version and ${}^{15}N_5$ -labeled version. Analyze the mixture on a HPLC system coupled with a Triple quad mass spectrometer using instrumental parameters described in "Optimization of mass spectrometer parameters for targeted cap nucleotides" and 'Quantification of cap nucleotides by LC-MS/MS' sessions in the manuscript. See **Supplementary Figure 2D** as an example.

Supplementary Figure 1. HPLC purification of ${}^{15}N_5$ -m⁷GpppAm from the nuclease P1 digest of ${}^{15}N_5$ -m⁷GpppAm-capped RNA.

Supplementary Figure 2. Characterization of synthetic ${}^{15}N_5$ -m⁷GpppAm and m⁷GpppAm by LC-MS analysis. (A) LC-MS/MS analysis of the HPLC fraction containing ${}^{15}N_5$ -m⁷GpppAm in MRM mode. (B) HRMS of m⁷GpppAm. (C) LC-MS/MS analysis of m⁷GpppAm in product ion scan mode. (D) LC-MS/MS analysis of a mixture of ${}^{15}N_5$ -m⁷GpppAm and m⁷GpppAm in MRM mode. Ade, adenine; m⁷Gua, N^7 -methylguaninie; R, ribose; mR, 2-O-methylribose; H, hydrogen. The results in C have been published in the paper by Wang *et al.*¹

Supplementary Figure 3. MS/MS spectra of unlabeled cap nucleotides with assignments. (A-AB) m^7 GpppC, m^7 GpppU, m^7 GpppG, m^7 GpppA, m^7 Gpppm⁶A, m^7 GpppCm, m^7 GpppUm, m^7 GpppGm, m^7 GpppAm, m^7 Gpppm⁶Am, GpppC, GpppU, GpppG, GpppA, Gpppm⁶A, GpppCm, GpppUm, GpppGm, GpppAm, Gpppm⁶Am, NAD, FAD, UDP-Glc, UDP-GlcNAc, $m^{2,2,7}$ GpppG, dpCoA, m^7 Gpppm¹A, m^7 Gpppm¹Am. Abbreviations: Ade, adenine; Gua, guanine; m^7 Gua, N^7 -methylguaninie; m^6 Ade, N^6 -methyladenosine; Cyt, cytosine; G, guanosine; Flav, flavin; A, adenosine; N, nicotinamide; R, ribose; mR, 2-O-methylribose; H, hydrogen; p, phosphate; pp, diphosphate; pp, triphosphate; N, nicotinamide; M, molecular ion; m^1 Ade, N^1 -methyladenosine; Ura, uracil; U, uridine; $m^{2,2,7}$ Gua, $N^{2,2,7}$ -trimethylguanine; $m^{2,2,7}$ G, $N^{2,2,7}$ -trimethylguanosine. The results have been published in the paper by Wang *et al*¹.

Supplementary Figure 4. Selective ion-chromatograms for monitoring MRM transitions for cap nucleotides. (A-X) m⁷Gpppm⁶A, m⁷GpppC, m⁷GpppU, m⁷GpppG, m⁷GpppA, m⁷GpppCm, m⁷GpppUm, m⁷GpppGm, m⁷Gpppm⁶Am, GpppC*, GpppU*, GpppG*, GpppA*, Gpppm⁶A*, GpppCm*, GpppUm*, GpppGm*, GpppAm*, Gpppm⁶Am*, dpCoA*, m^{2.2.7}GpppG*, FAD, UDP-Glc, and UDP-GlcNAc. For each cap, there are three panels: top, unlabeled standard; middle, analyte in RNA sample; and bottom, isotope-labeled standard spiked into RNA sample. Red asterisks denote caps that were not detectable in any of the RNA samples analyzed in this work. The results have been published in the paper by Wang *et al.*¹

Supplementary Figure 4, continued

Supplementary Figure 4, continued

Supplementary Figure 5. Calibration curves for the quantification of cap dinucleotides. (A-N) m⁷GpppC, m⁷GpppU, m⁷GpppG, m⁷GpppA, m⁷Gpppm⁶A, m⁷GpppCm, m⁷GpppUm, m⁷GpppGm, m⁷Gpppm⁶Am, NAD, FAD, UDP-Glc, UDP-GlcNAc. The results have been published in the paper by Wang *et al.*¹

Reference

1. Wang, J. *et al.* Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. *Nucleic Acids Res.* **47**, e130 (2019).