Protocol

Check for updates

Fabrication of electron tunneling probes for measuring single-protein conductance

In the format provided by the authors and unedited

Fabrication of electron tunnelling probes for measuring single protein conductance

Tao Jiang ¹, Long Yi ², Xu Liu ¹, Aleksandar P. Ivanov ², Joshua B. Edel ², and Longhua

Tang^{1*}

¹ State Key Laboratory of Modern Optical Instrumentation, Interdisciplinary Centre for Quantum Information, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China. ² Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, UK.

Methods for protein junctions	Electrode	Feature	Number of	Scalability	Reproducibility	Ref.
	configurations	gap size	molecules			
Single-protein-coupled quantum	Symmetric	Adjustable	Single	High	Low	This
mechanical tunneling probes						work
Scanning tunnelling microscopy	Asymmetric	Adjustable	Single	Low	High	1
break junction						1
Mechanically controlled break	Symmetric	Adjustable	Single	Low	High	2
junctions						2
Crack-defined break junction	Symmetric	Sub-3 nm	Single	High	Low	3
Lithography-defined cutting		Loga than				
protein junction based on single-	Symmetric	Less than	Single	Middle	Middle	4
walled carbon nanotubes		10 nm				
Nanowire cross-protein junction	Asymmetric	Sub-5 nm	Ensemble	Middle	Low	5
Liquid metal contact junctions	Asymmetric	Sub-5 nm	Ensemble	Low	Low	6

Supplementary Table 1 Comparison of protein junctions fabricated by different methods.

concept	explanation
Working electrode	An electrode where the target substance undergoes an electrochemical
	reaction.
Reference electrode	Used as a potential reference for the working electrode.
Counter electrode	The electrode that is opposite to the working electrode is also called an
	auxiliary electrode.
quasi-reference	When there is no reasonable matching reference electrode to measure the
electrode	electrochemical reaction, the selected one has the properties of a conductor,
	and the electrode surface does not have a clear electrochemically hardened
	electrode material to act as a reference electrode.
Potentiostat	A device that keeps the potential of the working electrode constant relative
	to the reference electrode. Its working principle is to accurately measure the
	current between the working electrode and the counter electrode.

Supplementary Table 2 Explanations of electrochemical concepts.

Supplementary Figure 1 Basic circuit diagrams of the bipotentiostat used for nanoelectrode fabrication.⁷

Supplementary Figure 2 CV measurement of the gold plating solution (Initial: -1 V, Final: 0.2 V, Sample rate: 0.01 V/s).

Supplementary Figure 3 (a-b) I-V between the two electrodes (a) before and (b) after electrical contact. (c) Electrochemical pre-deposition of gold on the carbon nanoelectrodes. An abrupt increase in the current was observed during the deposition due to the generation of a tunnelling current.

Supplementary Figure 4 Current-bias plots of different streptavidin-coupled QMT probes measured in 1 mM phosphate buffer solution (PBS) at room temperature (25 °C).

Supplementary Figure 5 Chronoamperometric traces of single streptavidin-bridged QMT probes at different bias using 1 mM PBS (pH 7.4) at 25 °C. Representative 10-s *I-t* traces are shown on the left and zoomed-in 0.1s traces are shown in the middle. The emergence of multiple conductance states becomes visible with increasing applied bias. The corresponding all-points current histograms are plotted on the right.

Reference:

- X. Zhuang, A. Zhang, S. Qiu, C. Tang, S. Zhao, H. Li, Y. Zhang, Y. Wang, B. Wang, B. Fang and W. Hong, *iScience*, 2020, 23, 101001.
- D. Stefani, C. Guo, L. Ornago, D. Cabosart, M. El Abbassi, M. Sheves, D. Cahen and H. S. J. van der Zant, *Nanoscale*, 2021, 13, 3002-3009.
- 3. V. Dubois, S. N. Raja, P. Gehring, S. Caneva, H. S. J. van der Zant, F. Niklaus and G. Stemme, *Nat Commun*, 2018, **9**, 3433.
- X. Guo, J. P. Small, J. E. Klare, Y. Wang, M. S. Purewal, I. W. Tam, B. H. Hong, R. Caldwell, L. Huang, S. O'Brien, J. Yan, R. Breslow, S. J. Wind, J. Hone, P. Kim and C. Nuckolls, *Science*, 2006, **311**, 356-359.
- J. A. Fereiro, B. Kayser, C. Romero-Muniz, A. Vilan, D. A. Dolgikh, R. V. Chertkova, J. C. Cuevas, L. A. Zotti, I. Pecht, M. Sheves and D. Cahen, *Angew Chem Int Ed Engl*, 2019, 58, 11852-11859.
- 6. Y. Li, S. E. Root, L. Belding, J. Park, J. Rawson, H. J. Yoon, M. Baghbanzadeh, P. Rothemund and G. M. Whitesides, *J Am Chem Soc*, 2021, **143**, 5967-5977.
- 7. Y. Huang, A. J. Mason, 2009 IEEE Biomedical Circuits and Systems Conference. IEEE, 2009: 29-32.