Supplementary information

Encapsulating and stabilizing enzymes using hydrogen-bonded organic frameworks

In the format provided by the authors and unedited

Supplementary Information for

Encapsulating and stabilizing enzymes using hydrogenbonded organic frameworks

Guosheng Chen^{a*}, Siming Huang^b, Xiaomin Ma^c, Rongwei He^d, Gangfeng Ouyang^{ad*}

^aMOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yatsen University, Guangzhou 510275, China

^bSchool of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China

^cCryo-EM Center, Southern University of Science and Technology, Shenzhen, 518055, China ^dSchool of Chemical Engineering and Technology, Sun Yat-sen University

*Corresponding authors, E-mail: chengsh39@mail.sysu.edu.cn (G. Chen), TEL: 020-

84110953; cesoygf@mail.sysu.edu.cn (G. Ouyang), TEL: 020-84110845.

Supplementary Method 1 | ammoniation of enzyme

- 1. Add 2.4 mg ethylenediamine (EDA) into 10 mL of deionized water in a plastic tube
- 2. Transfer 2 mL of prepared EDA solution (4.01 mM) in a 20 mL glass vial
- 3. Adjust the pH of the EDA solution to 4.5 using 1 M HCl.
- Add 20 mg enzyme into the EDA solution, followed by adding 7.2 mg of N-(3dimethylamino-propyl)-N'-ethylcarbodiimide hydrochloride (0.038 mmol).
- 5. Stir the mixed solution on ice for 120 min to enable the ammoniation.
- Transfer the ammoniated enzyme solution to a dialysis bag (molecular weight cut-off MWCO= 8 kDa), and remove the excess reagents and salts by dialysis in deionized water for 18 h (renew the deionized water every 6 h).
- 7. Concentrate the ammoniated enzyme to 2 mg/mL using deionized water.

■ PAUSE POINT This ammoniated enzyme solution can be stored at 4 °C in the refrigerator overnight if desired.

proteins	Loading efficiency ^a (%, w/w)	isoelectric point ^b
BSA	33.2	5.8
Cyt c	32.7	9.1
HRP	34.2	9.6
CAT	47.9	7.6
MB	44.6	8.7
Pepsin	24.3	3.7
GOx	28.0	5.0
OVA	30.0	5.2
TRF	36.9	8.4

Supplementary Table 1. Summary of the protein loading efficiencies using this method and the isoelectric point of proteins

^athe loading efficiency is obtained from our primary research paper (Ref. 1) ^bthis parameters were supported by the SIB Bioinformatics Resource Portal, ExPASy. (https://www.expasy.org/)

	proteins	Loading	Deferrer
carriers		(w/w, %)	Reference
	GOx, HRP, β-		
ZIF-8	galactosidase, alcohol	< 5	<i>Nat. Catal.</i> 1, 689– 695
	dehydrogenase, lactate		(2018).
	dehydrogenase		
ZIF-8	HRP, Cyt c, GOx	0.25-4.2	Angew. Chem. Int. Ed. 59,
			13947-13954 (2020).
ZIF-8	GOx, HRP	8.45%, 4.71	Sci. Adv. 6, eaax5785
			(2020).
ZIF-8	Cyt c, HRP, CAT, Urate	0.7-4.2	Angew Chem Int Ed 59
	oxidase, alcohol		2867 - 2874 (2020)
	dehydrogenase		2007 – 2074 (2020).
ZIF-8	GOx	~10	Nat. Commun. 10, 5165
			(2019).
ZIF-90	CAT	6.0	J. Am. Chem. Soc. 139,
			6530-6533 (2017).
ZIF-90	CAT	1.3	J. Am. Chem. Soc. 141,
			2348-2355 (2019)
MAF-7 ^b	CAT	3.8, 7.0	J. Am. Chem. Soc. 141,
			2348-2355 (2019)

Supplementary Table 2^a. Comparison of the loading efficiencies between this protocol and other in situ MOF, COF and HOF methods for protein encapsulation

MAF-2 ^c	GOx	7.0	Chem. Eur. J. 25,5463 –
UIO-66-NH2 ^d	β-glucosidase, invertase, β- galactosidase	~13.5, ~14.8, 12.3	<i>Nat. Commun.</i> 10, 5002 (2019).
COFs TpPa-1 ^e	Cyt c, HRP, lipase	21.7, 27.8, 12.5,	Cell Rep. Phys. Sci. 2022, 3, 101153
NKCOF-98 ^f ,	Lipase, Cyt c, GOx,	- 20 6 - 42 5	Angew. Chem.Int. Ed.
NKCOF-99 ^g ,	BSA	~20.0-~42.3	2022, 61, e202208744
BioHOF-1 ^h	CAT, alcohol oxidase	~6.0, ~2.9	J. Am. Chem. Soc. 2019, 141, 36, 14298–14305
	BSA, Cyt c, HRP, CAT,		
HOF-101	MB, Pepsin, GOx,	24.3-47.9	This method
	OVA, TRF		

^aSupplementary Table 2 is adapted from our primary research paper (Ref. 1)

^bMAF-7: Metal azolate frameworks-7, a Zn-MOFs with 3 - methyl - 1,2,4 - triazole as linker ^cMAF-2: Metal azolate frameworks-2, a Cu-MOFs with 3,5 - diethyl - 1,2,4 - triazole as linker

^dUIO-66: Zr–MOF with 1,4-benzene-dicarboxylate as linker

^eCOF TpaPa-1, a COF constructed by 1,3,5-triformylphloroglucinol and *p*-phenylenediamine

^fNKCOF-98, a COF constructed by 5-bis(2-methoxyethoxy)terephthalohydrazide and 1,3,5-triformylbenzene

^gNKCOF-99, a COF constructed by hydrazinehydrate and 1,3,5-triformylbenzene

^hBioHOF-1, a HOF constructed by *tetrakis*(4-amidiniumphenyl)methane and *tetrakis*(4-carboxylphenyl)methane

Supplementary Reference

1. Chen, G. et al. Protein-directed, hydrogen-bonded biohybrid framework. *Chem*, **7**, 2722–2742 (2021).