Supplementary information

Interrogation of the mammalian gut-brain axis using LC-MS/MS-based targeted metabolomics with in vitro bacterial and organoid cultures and in vivo gnotobiotic mouse models

In the format provided by the authors and unedited

Supplementary information

Interrogation of the mammalian gut-brain axis using LC-MS/MS-based targeted metabolomics with in vitro bacterial and organoid cultures and in vivo gnotobiotic mouse models

In the format provided by the authors and unedited

Interrogation of the Information: Supplemental 1 mammalian gut-brain-axis using LC-MS/MS-based 2 targeted metabolomics using in vitro bacterial and 3 organoid cultures and in vivo gnotobiotic mouse 4 models 5 6 7 Thomas D. Horvath^{1,2, †}, Sigmund J. Haidacher^{1,2, †}, Melinda A. Engevik^{1,2, †}, Berkley 8 Luck^{1,2}, Wenly Ruan^{1,2}, Faith Ihekweazu^{1,2}, Meghna Bajaj³, Kathleen M. Hoch^{1,2}, Numan 9 Oezguen^{1,2}, Jennifer K. Spinler^{1,2}, James Versalovic^{1,2} and Anthony M. Haag^{1,2,*} 10 11 ¹Department of Pathology and Immunology, Baylor College of Medicine, 1 Baylor Plaza, 12 Houston, TX 77030, USA 13 ²Texas Children's Microbiome Center, Department of Pathology, Texas Children's 14 Hospital, 1102 Bates Ave, Houston, TX 77030, USA 15 ³Department of Chemistry and Physics, and Department of Biotechnology, Alcorn State 16 University, 1000 ASU Drive, Lorman, MS 39096, USA 17 18 19 [†]These authors contributed equally to this work. 20 21 *Corresponding Author: anthony.haag@bcm.edu; Tel: 1-832-824-2225 22 23 24 Keywords: gut-brain-axis, neurotransmitters. LC-MS/MS, gut microbiome, 25 Bifidobacteria, Bacteroides, organoids, enteroids 26 27 **Supplemental Methods** Modified Growth Medium for Quality Control (QC) Preparations 28 29 A bacterial minimal media containing amino acids (30 mg/L Glycine, 84 mg/L L-30 Arginine, 63 mg/L L-Cystine, 42 mg/L L-Histidine, 105 mg/L L-Isoleucine, 105 mg/L L-31 Leucine, 146 mg/L L-Lysine, 30 mg/L L-Methionine, 66 mg/L L-Phenylalanine, 42 mg/L 32 L-Serine, 95 mg/L L-Threonine, and 94 mg/L L-Valine), vitamins (4 mg/L Choline chloride, 4 mg/L D-Calcium pantothenate, 4 mg/L Folic Acid, 4 mg/L Niacinamide, 4 mg/L 33 Pyridoxine hydrochloride, 0.4 mg/L Riboflavin, 4 mg/L Thiamine hydrochloride, and 7.2 34 mg/L i-Inositol), inorganic salts (0.2 g/L Calcium Chloride, 97.67 mg/L Magnesium Sulfate, 35 0.4 g/L Potassium Chloride, 3.7g/L Sodium Bicarbonate, 6.4 g/L Sodium Chloride, and 36 125 mg/L Sodium Phosphate monobasic) and 4.55 g/L glucose was used as a surrogate 37 matrix. The minimal medium was used to prepare QC standards for the Tryptophan and 38

- Tyrosine Pathways, Glutamate Cycle, and the short-chain fatty acid (SCFA) methods.
- 40

41 QC Preparations for the Tryptophan Pathway, Tyrosine Pathway, and Glutamate

42 Cycle Methods

For the Tryptophan and Glutamate Cycle methods, a Combined Intermediate 43 solution was prepared at a concentration of 100 µg/mL for all metabolites in the minimal 44 45 medium. The Combined Intermediate solution for the Tyrosine Pathway method was 46 prepared at a concentration of 100 µg/mL for all metabolites in a minimal medium that had been pH adjusted to 5.5 (0.850 mL of 2 M HCl into 40 mL of minimal medium). QC 47 48 standards were prepared at the appropriate levels for each method using the scheme described in Table S1 using either minimal medium (Tryptophan Pathway and Glutamate 49 Cycle methods) or minimal medium pH adjusted to 5.5 (Tyrosine Pathway method). All 50 growth medium-based Intermediate solutions and QC standards were prepared and 51 stored in glass vials and were stored at -80°C while not in use. Glass autosampler vials 52 were used for this study. 53

All QC standards were prepared at 10x the concentration of their intended concentration targets so that they can be used to assess the precision and accuracy of each assay at the intended concentration level after the standard 10x dilution of the growth medium.

58

Table S1: Quality Control Standard preparation scheme for the Tryptophan, Tyrosine, and Glutamate Cycle Methods

QC Standard	QC Level Targets	Undiluted [metabolite] (ng/mL)	Diluted 10x with ISS-A* [metabolite] (ng/mL)
QC - High	0.8 * HCS	8,000	800
QC - Medium	QC-High and QC-Low geomean	484	48.4
QC - Low	3 x LCS	29.3	2.93
QC - LCS	LCS	9.77	0.977

Abbreviations: QC, Quality Control Standard; ISS-A, internal standard solution A; HCS, high calibration standard (1,000 ng/mL for each metabolite); LCS, lowest calibration

63 standard (0.977 ng/mL for each metabolite).

*The Tryptophan Pathway and Glutamate Cycle methods use ISS-A as the diluent. The
 Tyrosine Pathway Method uses an ISS-A solution that has been acidified with 1% formic
 acid.

67

68 QC Preparations for the SCFA Method

For the SCFA methods, a Combined Intermediate solution was prepared at a 69 concentration of 100 µM for the SCFA derivatives in minimal medium. QC standards were 70 prepared at the appropriate levels for the SCFA method using the scheme described in 71 Table S2 using minimal medium. All growth medium-based Intermediate solutions and 72 QC standards for the SCFA method were prepared and stored in polypropylene vials and 73 74 were stored at -80°C while not in use. Polypropylene autosampler vials were used for this 75 study. 76 The SCFA QC standards were prepared at 10x the concentration of their intended

76 The SCFA QC standards were prepared at 10x the concentration of their intended 77 concentration targets so that they can be used to assess the precision and accuracy of 78 each assay at the intended concentration level after the standard 10x dilution of the 79 growth medium.

80

Table S2: Quality Control Standard preparation scheme for the Short-Chain Fatty Acid

82 (SCFA) Method

QC Standard	QC Level Targets	Undiluted [metabolite] (nM)	Diluted 10x with ISS-A [metabolite] (nM)
QC - High	0.8 * HCS	80,000	8,000
QC - Medium	QC-High and QC-Low geomean	4,840	484
QC - Low	3 x LCS	293	29.3
QC - LCS	LCS	97.7	9.77

83 Abbreviations: QC, Quality Control Standard; ISS-A, internal standard solution A; HCS,

high calibration standard (10,000 nM for each metabolite); LCS, lowest calibration
 standard (9.77 nM for each metabolite).

86

87 Limit-of-Detection (LOD) and Limit-of-Quantitation (LOQ) Determinations

A total of three calibration curves were used to perform the LOD and LOQ 88 assessments for the metabolites contained in each method. Calibration curves were 89 constructed for each metabolite by plotting the instrument response (IR = Area_{analyte} / A_{IS}) 90 factor of each Calibrator against their respective nominal concentration. From this plot, a 91 least-squares, linear regression with weighting (1/x) was used to calculate the line of best 92 fit for each metabolite. LOD and LOQ estimates were calculated using the standard 93 deviation of the y-intercepts and the mean slope of the three calibration curves as 94 described previously [1]. The slope and Y-intercept for each calibration curve, and the 95 estimated LODs and LOQs for each metabolite measured in the Glutamate Cycle method 96 97 (Table 3), SCFA method (Table S5), Tryptophan (Table S7) and Tyrosine (Table S9) 98 Pathway Methods are tabulated below.

99

QC Accuracy (%Bias) and Precision (coefficient of variance; %CV) Assessments and Acceptance Criteria

102 For each method, analytical accuracy of the method was assessed for 6 individual 103 QC standards assayed at each QC level by computing the Percent Bias (%Bias) of the measured metabolite concentration against the nominal concentrations of the QC 104 preparation at each level. The pooled analytical accuracy of the method was assessed at 105 106 each QC level by computing the %Bias between the mean of the measured metabolite concentration of the 6 QCs in the pool against the nominal concentrations of the QC 107 preparation at each level. Acceptance criteria for individual and pooled accuracy 108 determinations was specified as ± 20% of the nominal concentration at the QC-LCS level, 109 and ± 15% of the nominal concentration at the QC-Low, QC-Medium, and QC-High levels. 110 For each method, the pooled analytical precision was assessed by computing the 111 Coefficient of Variation (%CV) of the metabolite concentrations for each QC standard at 112 each QC level. Acceptance criteria for pooled precision determination was specified as ± 113 20% of the nominal concentration at the QC-LCS level, and ± 15% of the nominal 114 concentration at the QC-Low, QC-Medium, and QC-High levels. 115

The experimental data for the individual and pooled accuracy, and pooled precision assessments described directly above for the Glutamate Cycle Method (**Table S4**), SCFA method (**Table S6**), Tryptophan (**Table S8**) and Tyrosine (**Table S10**) Pathway Methods are tabulated below.

References

1231. ICH harmonized tripartite guideline: validation of analytical procedures: text and124methodology Q2(R1), International Conference of harmonization of technical125requirements for registration of pharmaceuticals for human use (2005).

Glutamate Cycle Method Benchmarking

Table S3: Limit-of-detection (LOD) and limit-of-quantitation (LOQ) assessments for the metabolites measured in the Glutamate Cycle Method.

GABA (linear 1/x model)				Glutamate (line	ear 1/x model)			Glutamine (linear 1/x model)				
	Slope (m)	Y-Int. (b)	r		Slope (m)	Y-Int. (b)	r		Slope (m)	Y-Int. (b)	r	
Curve 1	0.00470	0.00135	0.99954	Curve 1	0.00343	0.00424	0.99995	Curve 1	0.00581	0.00218	0.99987	
Curve 2	0.00454	0.00135	0.99988	Curve 2	0.00336	0.00399	0.99995	Curve 2	0.00581	0.00177	0.99976	
Curve 3	0.00480	0.00104	0.99997	Curve 3	0.00348	0.00394	0.99998	Curve 3	0.00588	0.00214	0.99994	
Mean	0.00468	0.00125	0.99980	Mean	0.00342	0.00406	0.99996	Mean	0.00583	0.00203	0.99986	
Std. Dev.	1.31E-04	1.79E-04	2.27E-04	Std. Dev.	6.03E-05	0.00016	1.73E-05	Std. Dev.	4.04E-05	2.26E-04	9.07E-05	
LOD	0.126 ng/mL			LOD	0.155 ng/mL			LOD	0.128 ng/mL			
LOQ	0.382 ng/mL			LOQ	0.470 ng/mL			LOQ	0.388 ng/mL			

Abbreviations: Std Dev., standard deviation; LOD, limit-of-detection; LOQ, limit-of-quantitation.

Table S4: Accuracy (%Bias) and Precision (coefficient of variance; %CV) assessments for the Glutamate Cycle Method.

	GABA				Glutamate		Glutamate				Glutamine			
QC	LCS	Low	Medium	High	LCS	Low	Medium	High	LCS	Low	Medium	High		
Conc. (ng/mL)	9.77	29.3	484	8,000	9.77	29.3	484	8,000	9.77	29.3	484	8,000		
QC 1	8.22	28.97	473	7,673	9.06	27.91	447	7,901	9.02	30.35	474	7,879		
QC 2	9.45	26.73	457	7,576	8.47	25.20	470	7,610	9.56	26.44	477	7,581		
QC 3	8.81	29.86	537	8,062	9.38	28.52	527	7,529	9.10	30.26	519	7,939		
QC 4	9.56	28.78	467	7,713	8.20	28.83	442	7,771	10.30	30.77	476	7,632		
QC 5	10.5	30.41	489	7,886	10.52	28.66	470	7,590	11.56	31.45	479	7,780		
QC 6	9.85	29.58	485	8,230	8.26	25.04	443	8,184	8.46	27.75	478	8,380		
Passing Incidence	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6		
Mean Conc. (ng/mL)	9.40	29.05	485	7,857	8.98	27.36	467	7,764	9.67	29.50	484	7,865		
Std. Dev. (ng/mL)	0.80	1.28	28.22	251.25	0.89	1.76	32.40	246.61	1.12	1.96	17.33	287.65		
Accuracy (% Bias)	96.2%	99.2%	100.2%	98.2%	91.9%	93.4%	96.4%	97.1%	98.9%	100.7%	100.0%	98.3%		
Precision (% CV)	8.5%	4.4%	5.8%	3.2%	9.9%	6.4%	6.9%	3.2%	11.5%	6.6%	3.6%	3.7%		

Note: Bolded and underlined metabolite concentration values fail acceptance criteria.

Abbreviations: QC, quality control standard; LCS, lowest calibration standard; Conc., concentration; Mean Conc., mean concentration; Std Dev., standard deviation.

Derivatized Short-Chain Fatty Acid (SCFA) Method Benchmarking

Curve 2

0.00546

-0.01603

0.98801

Table S5: Limit-of-detection (LOD) and limit-of-quantitation (LOQ) assessments for the metabolites measured in the SCFA method.

Acetic Acid (linear 1/x model)				Propionic Acid (li	near 1/x model)	1		Isobutyric Acid (linear 1/x model)			
	Slope (m)	Y-Int. (b)	r		Slope (m)	Y-Int. (b)	r		Slope (m)	Y-Int. (b)	r
Curve 1	0.00403	0.00556	0.99991	Curve 1	0.00413	0.00436	0.99997	Curve 1	0.00402	0.00409	0.99996
Curve 2	0.00404	0.00459	0.99993	Curve 2	0.00415	0.00442	0.99996	Curve 2	0.00406	0.00383	0.99997
Curve 3	0.00401	0.00549	0.99990	Curve 3	0.00413	0.00396	0.99997	Curve 3	0.00409	0.00337	0.99991
Mean	0.00403	0.00521	0.99991	Mean	0.00414	0.00425	0.99997	Mean	0.00406	0.00376	0.99995
Std. Dev.	1.53E-05	5.41E-04	1.53E-05	Std. Dev.	1.15E-05	2.50E-04	5.77E-06	Std. Dev.	3.51E-05	0.00036	3.21E-05
LOD	0.443 nM			LOD	0.199 nM			LOD	0.297 nM		
LOQ	1.34 nM			LOQ	0.605 nM			LOQ	0.899 nM		
Butyric Acid (linear 1/x n	nodel) ^a			2-Methylbutyric A	cid (linear 1/x	model) ^в		Isovaleric Acid	(linear 1/x mod	el)	
	Slope (m)	Y-Int. (b)	r		Slope (m)	Y-Int. (b)	r		Slope (m)	Y-Int. (b)	r
Curve 1	0.00425	0.00324	0.99977	Curve 1	0.00396	0.00257	0.99986	Curve 1	0.00441	-0.00044	0.99521
Curve 2	0.00431	0.00266	0.99997	Curve 2	0.00400	0.00253	0.99939	Curve 2	0.00421	0.00148	0.99847
Curve 3	0.00441	5.64E-04	0.99964	Curve 3	0.00383	0.00460	0.99985	Curve 3	0.00452	-0.00233	0.99896
Mean	0.00432	0.00215	0.99979	Mean	0.0039	0.00323	0.99970	Mean	0.00438	-0.00043	0.99755
Std. Dev.	8.08E-05	1.41E-03	1.66E-04	Std. Dev.	8.89E-05	1.18E-03	2.69E-04	Std. Dev.	1.57E-04	1.91E-03	2.04E-03
LOD	1.07 nM			LOD	0.994 nM			LOD	1.46 nM		
LOQ	3.26 nM			LOQ	3.01 nM			LOQ	4.35 nM		
Valeric Acid (linear 1/x m	nodel)										
	Slope (m)	Y-Int. (b)	r								
Curve 1	0.00496	-0.00607	0.99519								

Curve 3	0.00490	-0.00597	0.99668
Mean	0.00511	-0.00936	0.99329
Std. Dev.	3.07E-04	5.78E-03	0.00464
LOD	3.74 nM		
LOQ	11.3 nM		

Abbreviations: Std Dev., standard deviation; LOD, limit-of-detection; LOQ, limit-of-quantitation.

Table S6: Accura	acy (%Bias) and Precisior	n (%CV) assessments f	or the SCFA Method.

	Acetic Acid				Propionic Acid				Isobutyric Acid			
QC	LCS	Low	Medium	High	LCS	Low	Medium	High	LCS	Low	Medium	High
Conc. (nM)	97.7	293	4,840	80,000	97.7	293	4,840	80,000	97.7	293	4,840	80,000
QC 1	83.8	278	4,510	74,297	84.4	269	4,630	74,633	89.3	287	4,702	74,878
QC 2	85.5	276	4,517	75,189	84.2	278	4,680	76,646	87.2	290	4,755	77,668
QC 3	85.1	278	4,612	76,191	85.9	285	4,664	77,091	87.9	290	4,861	77,581
QC 4	91.0	281	4,626	73,855	87.9	273	4,449	75,301	87.5	284	4,701	74,369
QC 5	82.1	280	4,610	77,025	82.9	282	4,532	76,773	86.4	291	4,513	77,026
QC 6	81.5	268	4,616	76,041	84.8	266	4,565	75,358	91.0	276	4,607	77,400
Pass Incidence	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6
Mean Conc. (nM)	84.8	277	4,582	75,433	85.0	275	4,587	75,967	88.2	286	4,690	76,487
Std. Dev. (nM)	3.41	4.53	53.39	1209.99	1.70	7.34	88.29	996.78	1.68	5.55	120.16	1469.02
Accuracy (% Bias)	86.8%	94.4%	94.7%	94.3%	87.0%	94.0%	94.8%	95.0%	90.3%	97.7%	96.9%	95.6%
Precision (% CV)	4.0%	1.6%	1.2%	1.6%	2.0%	2.7%	1.9%	1.3%	1.9%	1.9%	2.6%	1.9%
	Butyric Acid				2-Methylbutyri	c Acid			Isovaleric Acid			
QC	LCS	Low	Medium	High	LCS	Low	Medium	High	LCS	Low	Medium	High
Conc. (nM)	97.7	293	4,840	80,000	97.7	293	4,840	80,000	97.7	293	4,840	80,000
QC 1	89.2	299	4,762	78,160	90.0	273	4,514	75,477	97.6	300	<u>3,614</u>	<u>57,670</u>
QC 2	83.7	282	4,722	80,191	92.8	280	4,810	75,334	85.9	265	4,185	71,590
QC 3	88.9	288	4,735	78,753	88.8	268	4,475	78,936	90.5	269	<u>3,952</u>	<u>66,519</u>
QC 4	93.6	290	4,572	77,983	101.0	283	4,460	78,304	91.2	274	4,671	78,447

QC 5	85.8	288	4,599	78,768	86.1	295	4,518	84,732	88.8	251	4,224	
QC 6	88.1	282	4,526	80,526	93.9	281	4,597	70,209	78.4	276	4,395	
Pass Incidence	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	4/6	
Mean Conc. (nM)	88.2	288	4,653	79,064	92.1	280	4,562	77,165	88.7	273	4,174	
Std. Dev. (nM)	3.36	6.36	98.99	1056.24	5.18	9.36	130.14	4822.50	6.38	16.09	363.51	
Accuracy (% Bias)	90.3%	98.3%	96.1%	98.8%	94.3%	95.6%	94.3%	96.5%	90.8%	93.1%	86.2%	
Precision (% CV)	3.8%	2.2%	2.1%	1.3%	5.6%	3.3%	2.9%	6.2%	7.2%	5.9%	8.7%	
	Valeric Acid											_
QC	LCS	Low	Medium	High								
Conc. (nM)	97.7	293	4,840	80,000								
QC 1	87.6	265	4,388	79,829								
QC 2	94.2	258	4,160	68,849								
QC 3	94.4	279	<u>4,033</u>	75,940								
QC 4	103.9	274	4,386	76,885								
QC 5	88.0	<u>221</u>	<u>3,942</u>	69,157								
QC 6	96.6	299	4,704	71,216								
Pass Incidence	6/6	5/6	4/6	6/6								
Mean Conc. (nM)	94.1	266	4,269	73,646								
Std. Dev. (nM)	6.05	26.34	279.74	4539.76								
Accuracy (% Bias)	96.4%	90.8%	88.2%	92.1%								
Precision (% CV)	6.4%	9.9%	6.6%	6.2%								

Note: Bolded and underlined metabolite concentration values fail acceptance criteria.

Abbreviations: QC, quality control standard; LCS, lowest calibration standard; Conc., concentration; Mean Conc., mean concentration; Std Dev., standard deviation.

Tryptophan Pathway Method Benchmarking

Table S7: Limit-of-detection (LOD) and limit-of-quantitation (LOQ) assessments for the metabolites measured in the Tryptophan Method

Tryptophan (linear 1/x model)				Serotonin (lin	ear 1/x model)			Melatonin (linear 1/x model)		
	Slope (m)	Y-Int. (b)	r		Slope (m)	Y-Int. (b)	r		Slope (m)	Y-Int. (b)	r
Curve 1	0.00387	0.00429	0.99998	Curve 1	0.00331	5.13E-04	0.99992	Curve 1	0.00360	1.92E-04	0.99997
Curve 2	0.00374	0.00360	0.99990	Curve 2	0.00315	6.45E-04	0.99956	Curve 2	0.00340	2.46E-04	0.99992
Curve 3	0.00378	0.00369	0.99990	Curve 3	0.00250	5.89E-04	0.99921	Curve 3	0.00397	1.07E-04	0.99950
Mean	0.00380	0.00386	0.99993	Mean	0.00299	5.82E-04	0.99956	Mean	0.00366	1.82E-04	0.99980
Std. Dev.	6.66E-05	3.75E-04	4.62E-05	Std. Dev.	4.29E-04	6.63E-05	3.55E-04	Std. Dev.	2.89E-04	6.99E-05	2.58E-04
LOD	0.326 ng/mL			LOD	0.073 ng/mL			LOD	0.063 ng/mL		
LOQ	0.988 ng/mL			LOQ	0.222 ng/mL			LOQ	0.191 ng/mL		
5-HIAA (linear 1/x model)											
5-HIAA (linear 1/x model)				5-Hydroxytryp	tophan^ (linear 1/x	model)		N-Acetylser	otonin ^в (linear 1/	x model)	
5-HIAA (linear 1/x model)	Slope (m)	Y-Int. (b)	r	5-Hydroxytryp	tophan ^a (linear 1/x Slope (m)	model) Y-Int. (b)	r	N-Acetylser	otonin ^в (linear 1/ Slope (m)	x model) Y-Int. (b)	r
5-HIAA (linear 1/x model) Curve 1	Slope (m) 0.00270	Y-Int. (b)	r 0.99946	5-Hydroxytryp Curve 1	tophan ^A (linear 1/x Slope (m) 8.82E-04	model) Y-Int. (b) 4.10E-05	r 0.99912	N-Acetylser Curve 1	otonin ^B (linear 1/ Slope (m) 0.00547	/x model) Y-Int. (b) 0.00140	r 0.99990
5-HIAA (linear 1/x model) Curve 1 Curve 2	Slope (m) 0.00270 0.00264	Y-Int. (b) 0.00132 9.89E-04	r 0.99946 0.99986	5-Hydroxytryp Curve 1 Curve 2	tophan ^A (linear 1/x Slope (m) 8.82E-04 7.07E-04	model) Y-Int. (b) 4.10E-05 -4.23E-05	r 0.99912 0.99943	N-Acetylser Curve 1 Curve 2	otonin [®] (linear 1/ Slope (m) 0.00547 0.00427	Y-Int. (b) 0.00140 2.56E-04	r 0.99990 0.99986
5-HIAA (linear 1/x model) Curve 1 Curve 2 Curve 3	Slope (m) 0.00270 0.00264 0.00288	Y-Int. (b) 0.00132 9.89E-04 3.79E-04	r 0.99946 0.99986 0.99957	5-Hydroxytryp Curve 1 Curve 2 Curve 3	tophan ^A (linear 1/x Slope (m) 8.82E-04 7.07E-04 7.15E-04	model) Y-Int. (b) 4.10E-05 -4.23E-05 -4.36E-05	r 0.99912 0.99943 0.99957	N-Acetylser Curve 1 Curve 2 Curve 3	otonin [®] (linear 1/ Slope (m) 0.00547 0.00427 0.00379	Y-Int. (b) 0.00140 2.56E-04 1.96E-04	r 0.99990 0.99986 0.99956
5-HIAA (linear 1/x model) Curve 1 Curve 2 Curve 3 Mean	Slope (m) 0.00270 0.00264 0.00288 0.00274	Y-Int. (b) 0.00132 9.89E-04 3.79E-04 8.96E-04	r 0.99946 0.99986 0.99957 0.99963	5-Hydroxytryp Curve 1 Curve 2 Curve 3 Mean	tophan ^A (linear 1/x Slope (m) 8.82E-04 7.07E-04 7.15E-04 7.68E-04	model) Y-Int. (b) 4.10E-05 -4.23E-05 -4.36E-05 -1.50E-05	r 0.99912 0.99943 0.99957 0.99937	N-Acetylser Curve 1 Curve 2 Curve 3 Mean	otonin [®] (linear 1/ Slope (m) 0.00547 0.00427 0.00379 0.00451	Y-Int. (b) 0.00140 2.56E-04 1.96E-04 6.17E-04	r 0.99990 0.99986 0.99956 0.999773
5-HIAA (linear 1/x model) Curve 1 Curve 2 Curve 3 Mean Std. Dev.	Slope (m) 0.00270 0.00264 0.00288 0.00274 1.25E-04	Y-Int. (b) 0.00132 9.89E-04 3.79E-04 8.96E-04 4.77E-04	r 0.99946 0.99986 0.99957 0.99963 2.07E-04	5-Hydroxytryp Curve 1 Curve 2 Curve 3 Mean Std. Dev.	tophan ^A (linear 1/x Slope (m) 8.82E-04 7.07E-04 7.15E-04 7.68E-04 9.8797E-05	model) Y-Int. (b) 4.10E-05 -4.23E-05 -4.36E-05 -1.50E-05 4.85E-05	r 0.99912 0.99943 0.99957 0.99937 2.30E-04	N-Acetylser Curve 1 Curve 2 Curve 3 Mean Std. Dev.	otonin [®] (linear 1/ Slope (m) 0.00547 0.00427 0.00379 0.00451 8.65E-04	x model) Y-Int. (b) 0.00140 2.56E-04 1.96E-04 6.17E-04 6.78E-04	r 0.99990 0.99986 0.99956 0.999773 1.86E-04
5-HIAA (linear 1/x model) Curve 1 Curve 2 Curve 3 Mean Std. Dev. LOD	Slope (m) 0.00270 0.00264 0.00288 0.00274 1.25E-04 0.575 ng/mL	Y-Int. (b) 0.00132 9.89E-04 3.79E-04 8.96E-04 4.77E-04	r 0.99946 0.99986 0.99957 0.99963 2.07E-04	5-Hydroxytryp Curve 1 Curve 2 Curve 3 Mean Std. Dev. LOD	tophan ^A (linear 1/x Slope (m) 8.82E-04 7.07E-04 7.15E-04 7.68E-04 9.8797E-05 0.208 ng/mL	model) Y-Int. (b) 4.10E-05 -4.23E-05 -4.36E-05 4.85E-05	r 0.99912 0.99943 0.99957 0.99937 2.30E-04	N-Acetylser Curve 1 Curve 2 Curve 3 Mean Std. Dev. LOD	otonin [®] (linear 1/ Slope (m) 0.00547 0.00427 0.00379 0.00451 8.65E-04 0.496 ng/mL	Y-Int. (b) 0.00140 2.56E-04 1.96E-04 6.17E-04 6.78E-04	r 0.99990 0.99986 0.99956 0.999773 1.86E-04

Notes: ^AD5-Tryptophan was used as a surrogate IS for 5-hydroxytryptophan; ^BD4-Serotonin was used as a surrogate IS for N-acetylserotonin.

Abbreviations: Std. Dev., standard deviation; LOD, limit-of-detection; LOQ, limit-of-quantitation.

	Tryptophan				Serotonin				Melatonin			
QC	LCS	Low	Medium	High	LCS	Low	Medium	High	LCS	Low	Medium	High
Conc. (ng/mL)	9.77	29.3	484	8,000	9.77	29.3	484	8,000	9.77	29.3	484	8,000
QC 1	9.62	31.89	485	8,075	9.01	25.19	441	7,334	10.12	30.96	512	8,128
QC 2	9.53	28.81	484	7,741	8.21	27.62	449	7,094	10.25	29.92	490	7,849
QC 3	9.22	31.03	498	8,550	8.49	27.00	458	7,474	9.42	30.62	525	8,109
QC 4	8.82	29.00	489	7,739	<u>7.66</u>	26.20	442	7,234	9.76	29.54	499	7,733
QC 5 ^c	<u>18.3</u>	29.66	510	8,144	<u>13.97</u>	25.48	449	7,273	<u>13.90</u>	28.53	505	7,884
QC 6	9.32	27.54	486	7,859	8.12	27.67	431	7,411	9.83	29.66	477	8,000
Passing Incidence	5/6	6/6	6/6	6/6	4/6	6/6	6/6	6/6	5/6	6/6	6/6	6/6
Mean Conc. (ng/mL)	9.30	29.65	492	8,018	8.30	26.53	445	7,304	9.88	29.87	501	7,951
Std. Dev. (ng/mL)	0.31	1.58	10.17	310.50	0.50	1.07	9.36	135.21	0.33	0.86	16.56	155.80
Accuracy (% Bias)	95.2%	101.2%	101.7%	100.2%	84.9%	90.5%	92.0%	91.3%	101.1%	102.0%	103.6%	99.4%
Precision (% CV)	3.4%	5.3%	2.1%	3.9%	6.0%	4.0%	2.1%	1.9%	3.3%	2.9%	3.3%	2.0%
	5-HIAA				5-Hydroxytryte	ophan⁴			N-acetylsero	tonin ^B		
QC	5-HIAA LCS	Low	Medium	High	5-Hydroxytryte	ophan ^a Low	Medium	High	N-acetylsero	tonin ^в Low	Medium	High
QC Conc. (ng/mL)	5-HIAA LCS 9.77	Low 29.3	Medium 484	High 8,000	5-Hydroxytryto LCS 9.77	ophan ^A Low 29.3	Medium 484	High 8,000	N-acetylsero LCS 9.77	tonin ^в Low 29.3	Medium 484	High 8,000
QC Conc. (ng/mL) QC 1	5-HIAA LCS 9.77 11.38	Low 29.3 27.57	Medium 484 539	High 8,000 8,650	5-Hydroxytryte LCS 9.77 10.32	29.42	Medium 484 435	High 8,000 8,107	N-acetylsero LCS 9.77 9.78	tonin ^B Low 29.3 31.80	Medium 484 508	High 8,000 8,231
QC Conc. (ng/mL) QC 1 QC 2	5-HIAA LCS 9.77 11.38 10.36	Low 29.3 27.57 29.24	Medium 484 539 544	High 8,000 8,650 8,404	5-Hydroxytryte LCS 9.77 10.32 9.10	29.42 28.03	Medium 484 435 438	High 8,000 8,107 8,051	N-acetylsero LCS 9.77 9.78 9.55	tonin ^B Low 29.3 31.80 30.19	Medium 484 508 555	High 8,000 8,231 8,351
QC Conc. (ng/mL) QC 1 QC 2 QC 3	5-HIAA LCS 9.77 11.38 10.36 8.48	Low 29.3 27.57 29.24 29.42	Medium 484 539 544 513	High 8,000 8,650 8,404 8,695	5-Hydroxytryte LCS 9.77 10.32 9.10 10.65	Dophan ^A Low 29.3 29.42 28.03 29.57	Medium 484 435 438 434	High 8,000 8,107 8,051 8,439	N-acetylsero LCS 9.77 9.78 9.55 9.02	tonin ^B Low 29.3 31.80 30.19 28.84	Medium 484 508 555 529	High 8,000 8,231 8,351 8,305
QC Conc. (ng/mL) QC 1 QC 2 QC 3 QC 4	5-HIAA LCS 9.77 11.38 10.36 8.48 9.49	Low 29.3 27.57 29.24 29.42 28.45	Medium 484 539 544 513 509	High 8,000 8,650 8,404 8,695 8,322	5-Hydroxytryte LCS 9.77 10.32 9.10 10.65 9.09	Low 29.3 29.42 28.03 29.57 28.66	Medium 484 435 438 434 434	High 8,000 8,107 8,051 8,439 7,814	N-acetylsero LCS 9.77 9.78 9.55 9.02 9.11	tonin ^B Low 29.3 31.80 30.19 28.84 30.35	Medium 484 508 555 529 521	High 8,000 8,231 8,351 8,305 8,097
QC Conc. (ng/mL) QC 1 QC 2 QC 3 QC 3 QC 4 QC 5 ^c	5-HIAA LCS 9.77 11.38 10.36 8.48 9.49 11.57	Low 29.3 27.57 29.24 29.42 28.45 31.04	Medium 484 539 544 513 509 536	High 8,000 8,650 8,404 8,695 8,322 8,950	5-Hydroxytryte LCS 9.77 10.32 9.10 10.65 9.09 <u>13.54</u>	Low 29.3 29.42 28.03 29.57 28.66 29.21	Medium 484 435 438 434 438 434 435	High 8,000 8,107 8,051 8,439 7,814 8,172	N-acetylsero LCS 9.77 9.78 9.55 9.02 9.11 <u>13.83</u>	tonin ^B Low 29.3 31.80 30.19 28.84 30.35 29.45	Medium 484 508 555 529 521 569	High 8,000 8,231 8,351 8,305 8,097 8,248
QC Conc. (ng/mL) QC 1 QC 2 QC 3 QC 3 QC 4 QC 5 ^c QC 6	5-HIAA LCS 9.77 11.38 10.36 8.48 9.49 11.57 <u>6.28</u>	Low 29.3 27.57 29.24 29.42 28.45 31.04 29.99	Medium 484 539 544 513 509 536 509	High 8,000 8,650 8,404 8,695 8,322 8,950 8,272	5-Hydroxytryte LCS 9.77 10.32 9.10 10.65 9.09 <u>13.54</u> 9.96	Low 29.3 29.42 28.03 29.57 28.66 29.21 28.48	Medium 484 435 438 434 438 434 448 458 441	High 8,000 8,107 8,051 8,439 7,814 8,172 8,401	N-acetylsero LCS 9.77 9.78 9.55 9.02 9.11 13.83 10.33	tonin ^B Low 29.3 31.80 30.19 28.84 30.35 29.45 31.62	Medium 484 508 555 529 521 569 539	High 8,000 8,231 8,351 8,305 8,097 8,248 7,975
QC Conc. (ng/mL) QC 1 QC 2 QC 3 QC 3 QC 4 QC 5 ^c QC 6 Passing Incidence	5-HIAA LCS 9.77 11.38 10.36 8.48 9.49 11.57 <u>6.28</u> 5/6	Low 29.3 27.57 29.24 29.42 28.45 31.04 29.99 6/6	Medium 484 539 544 513 509 536 509 6/6	High 8,000 8,650 8,404 8,695 8,322 8,950 8,272 6/6	5-Hydroxytryte LCS 9.77 10.32 9.10 10.65 9.09 13.54 9.96 5/6	Low 29.3 29.42 28.03 29.57 28.66 29.21 28.48 6/6	Medium 484 435 438 434 438 434 6/6	High 8,000 8,107 8,051 8,439 7,814 8,172 8,401 6/6	N-acetylsero LCS 9.77 9.78 9.55 9.02 9.11 13.83 10.33 5/6	tonin ^B Low 29.3 31.80 30.19 28.84 30.35 29.45 31.62 6/6	Medium 484 508 555 529 521 569 539 539 5/6	High 8,000 8,231 8,351 8,305 8,097 8,248 7,975 6/6
QC Conc. (ng/mL) QC 1 QC 2 QC 3 QC 3 QC 4 QC 5 ^c QC 6 Passing Incidence Mean Conc. (ng/mL)	5-HIAA LCS 9.77 11.38 10.36 8.48 9.49 11.57 <u>6.28</u> 5/6 9.20	Low 29.3 27.57 29.24 29.42 28.45 31.04 29.99 6/6 29.28	Medium 484 539 544 513 509 536 509 6/6 525	High 8,000 8,650 8,404 8,695 8,322 8,950 8,272 6/6 8,549	5-Hydroxytryte LCS 9.77 10.32 9.10 10.65 9.09 13.54 9.96 5/6 9.82	Low 29.3 29.42 28.03 29.57 28.66 29.21 28.48 6/6 28.90	Medium 484 435 438 434 438 434 448 458 441 6/6 442	High 8,000 8,107 8,051 8,439 7,814 8,172 8,401 6/6 8,164	N-acetylsero LCS 9.77 9.78 9.55 9.02 9.11 13.83 10.33 5/6 9.56	tonin ^B Low 29.3 31.80 30.19 28.84 30.35 29.45 31.62 6/6 30.38	Medium 484 508 555 529 521 569 539 5/6 537	High 8,000 8,231 8,351 8,305 8,097 8,248 7,975 6/6 8,201
QC Conc. (ng/mL) QC 1 QC 2 QC 3 QC 3 QC 4 QC 5 ^c QC 6 Passing Incidence Mean Conc. (ng/mL) Std. Dev. (ng/mL)	5-HIAA LCS 9.77 11.38 10.36 8.48 9.49 11.57 6.28 5/6 9.20 1.95	Low 29.3 27.57 29.24 29.42 28.45 31.04 29.99 6/6 29.28 1.20	Medium 484 539 544 513 509 536 509 6/6 525 16.20	High 8,000 8,650 8,404 8,695 8,322 8,950 8,272 6/6 8,549 261.12	5-Hydroxytrytv LCS 9.77 10.32 9.10 10.65 9.09 13.54 9.96 5/6 9.82 0.71	Low 29.3 29.42 28.03 29.57 28.66 29.21 28.48 6/6 28.90 0.60	Medium 484 435 438 434 458 441 6/6 442 9.07	High 8,000 8,107 8,051 8,439 7,814 8,172 8,401 6/6 8,164 232.45	N-acetylsero LCS 9.77 9.78 9.55 9.02 9.11 13.83 10.33 5/6 9.56 0.53	tonin ^B Low 29.3 31.80 30.19 28.84 30.35 29.45 31.62 6/6 30.38 1.17	Medium 484 508 555 529 521 569 539 5/6 537 22.56	High 8,000 8,231 8,351 8,305 8,097 8,248 7,975 6/6 8,201 140.10
QC Conc. (ng/mL) QC 1 QC 2 QC 3 QC 3 QC 4 QC 5 ^c QC 6 Passing Incidence Mean Conc. (ng/mL) Std. Dev. (ng/mL) Accuracy (% Bias)	5-HIAA LCS 9.77 11.38 10.36 8.48 9.49 11.57 <u>6.28</u> 5/6 9.20 1.95 94.1%	Low 29.3 27.57 29.24 29.42 28.45 31.04 29.99 6/6 29.28 1.20 99.9%	Medium 484 539 544 513 509 536 509 6/6 525 16.20 108.4%	High 8,000 8,650 8,404 8,695 8,322 8,950 8,272 6/6 8,549 261.12 106.9%	5-Hydroxytrytv LCS 9.77 10.32 9.10 10.65 9.09 13.54 9.96 5/6 9.82 0.71 100.6%	Low 29.3 29.42 28.03 29.57 28.66 29.21 28.48 6/6 28.90 0.60 98.6%	Medium 484 435 438 434 448 458 441 6/6 442 9.07 91.4%	High 8,000 8,107 8,051 8,439 7,814 8,472 8,401 6/6 8,164 232.45 102.1%	N-acetylsero LCS 9.77 9.78 9.55 9.02 9.11 13.83 10.33 5/6 9.56 0.53 97.8%	tonin ^B Low 29.3 31.80 30.19 28.84 30.35 29.45 31.62 6/6 30.38 1.17 103.7%	Medium 484 508 5255 529 521 569 539 5/6 537 22.56 111.0%	High 8,000 8,231 8,351 8,305 8,097 8,248 7,975 6/6 8,201 140.10 102.5%

 Table S8: Accuracy (%Bias) and Precision (%CV) and assessments for the Tryptophan Method.

Notes: ^AD5-Tryptophan was used as a surrogate IS for 5-Hydroxytryptophan; ^BD4-Serotonin was used as a surrogate IS for N-acetylserotonin; ^CQC data for the fifth QC-LCS sample was rejected from the QC pooled statistics because of a noted sample preparation error during batch preparation; Bolded and underlined metabolite concentration values fail acceptance criteria.

Abbreviations: QC, quality control standard; LCS, lowest calibration standard; Conc., concentration; Mean Conc., mean concentration; Std Dev., standard deviation.

Tyrosine Method Benchmarking

Table S9: Limit-of-detection (LOD) and limit-of-quantitation (LOQ) assessments for the metabolites measured in the Tyrosine Method.

Tyramine (linear 1/x model)				Dopamine (line	ar 1/x model)			L-DOPA (line	ar 1/x model)		
	Slope (m)	Y-Int. (b)	r		Slope (m)	Y-Int. (b)	r		Slope (m)	Y-Int. (b)	r
Curve 1	0.00488	1.33E-04	0.99966	Curve 1	0.00207	0.00059	0.99976	Curve 1	0.00889	0.00652	0.99984
Curve 2	0.00515	1.31E-04	0.99987	Curve 2	0.00197	6.32E-04	0.99986	Curve 2	0.00911	0.00264	0.99992
Curve 3	0.00482	6.95E-04	0.99965	Curve 3	0.00202	5.11E-04	0.99968	Curve 3	0.00948	0.00280	0.99993
Mean	0.00495	3.20E-04	0.99973	Mean	0.00202	5.77E-04	0.99977	Mean	0.00916	0.00399	0.99990
Std. Dev.	1.76E-04	3.25E-04	1.24E-04	Std. Dev.	5.00E-05	6.15E-05	9.02E-05	Std. Dev.	2.98E-04	0.00220	4.93E-05
LOD	0.217 ng/mL			LOD	0.101 ng/mL			LOD	0.791 ng/mL		
LOQ	0.656 ng/mL			LOQ	0.305 ng/mL			LOQ	2.40 ng/mL		
Tyrosine (linear 1/x mode	Tyrosine (linear 1/x model)^					lel) ^B		Epinephrine	(linear 1/x mode	I)	
	Slope (m)	Y-Int. (b)	r		Slope (m)	Y-Int. (b)	r		Slope (m)	Y-Int. (b)	r
Curve 1	0.00136	0.00334	0.99813	Curve 1	0.0141	0.00255	0.99960	Curve 1	0.00861	0.00307	0.99932
Curve 2	0.00146	0.00305	0.99837	Curve 2	0.0141	0.00189	0.99976	Curve 2	0.00874	0.00213	0.99914
Curve 3	0.00137	0.00301	0.99950	Curve 3	0.0145	0.00157	0.99985	Curve 3	0.00885	0.00219	0.99974
Mean	0.00140	0.00313	0.99867	Mean	0.0143	0.00200	0.99974	Mean	0.00873	0.00246	0.99940
Std. Dev.	5.51E-05	1.80E-04	7.32E-04	Std. Dev.	2.34E-04	5.00E-04	1.27E-04	Std. Dev.	1.20E-04	5.26E-04	3.08E-04
LOD	0.426 ng/mL			LOD	0.116 ng/mL			LOD	0.199 ng/mL		

LOQ	1.29 ng/mL			LOQ	0.350 ng/mL	LOQ	0.603 ng/mL
Anthranilic Acid (linear 1	/x model) ^c						
	Slope (m)	Y-Int. (b)	r				
Curve 1	0.00420	0.00781	0.99771				
Curve 2	0.00488	0.00812	0.99540				
Curve 3	0.00472	0.00775	0.99907				
Mean	0.00460	0.00789	0.99739				
Std. Dev.	3.56E-04	1.99E-04	0.00186				
LOD	0.142 ng/mL						
LOQ	0.432 ng/mL						

Notes: ^AD4-Tyramine was used as a surrogate IS for Tyrosine; ^BD3-L-DOPA was used as a surrogate IS for Norepinephrine; ^CD4-Tyramine was used as a surrogate IS.

Abbreviations: Std. Dev., standard deviation; LOD, limit-of-detection; LOQ, limit-of-quantitation.

Table S10: Accuracy ((%Bias) and	Precision (%	GCV) and ass	sessments for the	Tyrosine Method.
-----------------------	-------------	--------------	--------------	-------------------	------------------

	Tyramine				Dopamine				L-DOPA			
QC	LCS	Low	Medium	High	LCS	Low	Medium	High	LCS	Low	Medium	High
Conc. (ng/mL)	9.77	29.3	484	8,000	9.77	29.3	484	8,000	9.77	29.3	484	8,000
QC 1	8.94	31.80	538	8,467	7.87	27.52	494	7,511	7.97	25.81	523	8,298
QC 2	9.45	31.44	488	8,154	9.15	29.49	478	7,671	8.43	26.73	493	8,704
QC 3	9.04	30.78	481	8,208	9.33	28.12	485	7,812	7.90	28.44	494	8,253
QC 4	9.60	31.91	531	8,223	8.82	26.92	479	7,742	<u>6.84</u>	26.69	499	8,010
QC 5	8.62	31.60	509	8,097	8.42	30.13	473	7,917	7.88	25.37	491	8,096
QC 6	8.67	30.93	523	8,714	8.49	29.03	508	7,677	<u>6.14</u>	25.56	514	8,553
Pass Incidence	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	4/6	6/6	6/6	6/6
Mean Conc. (ng/mL)	9.05	31.41	512	8,311	8.68	28.53	486	7,722	7.53	26.43	502	8,319
Std. Dev. (ng/mL)	0.40	0.46	23.19	234.82	0.53	1.23	12.70	138.44	0.86	1.14	13.15	265.50

Accuracy (% Bias)	92.7%	107.2%	105.7%	103.9%	88.8%	97.4%	100.4%	96.5%	77.0%	90.2%	103.8%	104.0%	
Precision (% CV)	4.4%	1.5%	4.5%	2.8%	6.2%	4.3%	2.6%	1.8%	11.4%	4.3%	2.6%	3.2%	
	Tyrosine ^A				Norepineph	Norepinephrine ^B				Epinephrine			
QC	LCS	Low	Medium	High	LCS	Low	Medium	High	LCS	Low	Medium	High	
Conc. (ng/mL)	9.77	29.3	484	8,000	9.77	29.3	484	8,000	9.77	29.3	484	8,000	
QC 1	8.50	26.89	439	8,271	8.71	29.03	500	8,208	8.91	28.85	502	8,327	
QC 2	8.25	25.37	430	8,520	9.75	31.98	508	8,320	8.83	28.92	507	8,436	
QC 3	8.07	28.35	427	8,034	8.96	30.36	510	8,443	8.13	31.90	523	8,190	
QC 4	11.29	30.69	427	8,587	9.70	30.87	532	8,251	8.86	30.28	529	8,134	
QC 5	8.06	26.83	444	8,360	8.62	29.17	527	8,395	7.83	31.84	529	8,256	
QC 6	8.24	27.71	423	8,691	9.81	29.81	536	8,490	7.90	31.49	530	8,423	
Pass Incidence	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	6/6	
Mean Conc. (ng/mL)	8.73	27.64	432	8,411	9.26	30.20	519	8,351	8.41	30.55	520	8,294	
Std. Dev. (ng/mL)	1.26	1.80	8.04	238.96	0.55	1.12	14.54	110.76	0.51	1.41	12.34	123.08	
Accuracy (% Bias)	89.4%	94.3%	89.2%	105.1%	94.8%	103.1%	107.2%	104.4%	86.1%	104.3%	107.4%	103.7%	
Precision (% CV)	14.4%	6.5%	1.9%	2.8%	6.0%	3.7%	2.8%	1.3%	6.1%	4.6%	2.4%	1.5%	
	Anthranilic A	Acid ^c											
QC	LCS	Low	Medium	High									
Conc. (ng/mL)	9.77	29.3	484	8,000									
QC 1	8.31	27.98	<u>563</u>	<u>9,792</u>	1								
QC 2	9.08	29.67	541	<u>10,042</u>									
QC 3	9.93	31.70	527	<u>10,057</u>									
QC 4	9.92	31.70	550	<u>10,495</u>									
QC 5	9.98	30.05	<u>566</u>	<u>10.006</u>									
QC 6	10.10	33.00	534	<u>10,164</u>									
Pass Incidence	6/6	6/6	6/6	<u>0/6</u> ^D									
Mean Conc. (ng/mL)	9.55	30.69	547	<u>10,093</u>									
Std. Dev. (ng/mL)	0.71	1.80	15.69	231.80									

Accuracy (% Bias)

Precision (% CV)

97.8%

7.5%

104.7%

5.9%

113.0%

2.9%

<u>126.2%^D</u>

2.3%

Notes: ^AD4-Tyramine was used as a surrogate IS for Tyrosine; ^BD3-L-DOPA was used as a surrogate IS for Norepinephrine; ^CD4-Tyramine was used as a surrogate IS; ^DIon suppression was evident for the D4-Tyramine IS response in the QC-High Standards – this suppression causes a slight elevation in the measured concentrations of anthranilic acid measured in the QC-High standards; Bolded and underlined metabolite concentration values fail acceptance criteria.

Abbreviations: QC, quality control standard; LCS, lowest calibration standard; Conc., concentration; Mean Conc., mean concentration; Std Dev., standard deviation.