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Supplementary Figures 

 

 
 

Supplementary Figure 1 

 

Pipeline of the domain boundary prediction based on ThreaDom and FUpred. Starting from the query amino acid sequence, 

LOMETS2 is first used to create multiple template alignments from the PDB. If the protein is defined as an Easy target by 

LOMETS2 and the alignment coverage is larger than a cutoff (Cov=95%), ThreaDom is employed to predict the domain 

boundaries according to the domain conservation score. Otherwise, the domain boundary will be predicted through FUpred 

by maximizing the number of intra-domain contacts and minimizing the number of inter-domain contacts on the contact-map 

predicted by a deep-learning based neural network program, ResPRE. 
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Supplementary Figure 2 

 

Example of continuous and discontinuous domain. 

 

(a) A protein (PDBID: 2qbuA) contains two continuous domains, where the first domain (green) ranges from residue 1 to 

residue 131, and the second domain (red) covers residues from 132 to 228. (b) A protein (PDBID: 1atgA) consists of a 

discontinuous domain and a continuous domain. The first domain is a discontinuous domain which contains two separate 

segments at the sequence level, where the first segment (cyan) ranges from residue 1 to residue 81, and the second segment 

(yellow) ranges from residue 191 to residue 232. The second domain is a continuous domain inserted between the two 

segments of the discontinuous domain, and it covers the residues from 82 to 190. (c) A protein (PDBID: 1h88C) contains 

three continuous domains, where the first domain (red) ranges from residue 1 to residue 51, the second domain (blue) covers 

residues from 52 to 105, and the third domain (green) includes residues from 106 to 152. 
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Supplementary Figure 3 

 

Example (PDBID:1bvp1) to show the contact map shift for the FUscore calculation of the discontinuous domain. 

 

(a) The contact map predicted by ResPre, where residues 1 to i belong to the first segment of the first discontinuous domain 

(dom1: seg1, red), and the second segment of the first domain (dom1: seg2, orange) includes residues j+1 to L. The second 

domain (blue) is a continuous domain which covers residues from i+1 to j. The illustration of the sequence is shown below 

the contact map, where different colors indicate different domains or segments. (b) The contact map and the 

corresponding sequence illustration after shifting the second segment of the first domain to the position before the first 

segment of the first domain.  
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Supplementary Figure 4 

 

Outline of DeepPotential for distance, orientation and hydrogen bond network prediction, where PLM, MI, and HMM 

represent the PseudoLikelihhod Maximized Potts model, Mutual Information, and Hidden Markov Model, respectively. 
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Supplementary Figure 5 

 

Outline of D-I-TASSER for individual domain model prediction, where contact predictors include ResPre1, DeepPLM2, 

ResTriplet3, TripletRes4, and NeBcon5. 
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Supplementary Figure 6 

 

Comparison between models generated by using contacts predicted by the individual predictor and combined contacts from 

different predictors. 

 

(a) Comparison between TM-scores of models generated by using ResPre contacts and that by using combined contacts of 

different predictors. (b) An example (T1092-D2) to show models generated by using contacts predicted by different methods, 

where the thin blue line and color cartoons represent the native structure and predicted models, respectively. 

  



7 
 

 
 
Supplementary Figure 7 

 

Pipeline of DEMO for domain assembly. Starting from individual domain structures, templates are first identified by 

structurally threading the domains through a non-redundant multi-domain structural library using TM-align. Meanwhile, the 

inter-domain distance map and interface map are predicted by DeepPotential. Replica-exchange Monte Carlo simulations are 

then used to assemble the domain structures under the guidance of inter-domain distance profiles and orientations deduced 

from the templates, inter-domain distance and interface restraints predicted by DeepPotential, and the inherent 

knowledge-based force field. Finally, the model with the lowest energy is selected for linker reconstruction and side-chain 

refinement.  
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Supplementary Figure 8 

 

Pipeline of COFACTOR for protein function prediction based on the D-I-TASSER predicted structure, sequence, and 

protein-protein interaction (PPI). The Gene Ontology (GO) results are determined by a consensus of the structure-, sequence- 

and PPI-based predictions, while the ligand-binding site and Enzyme Commission (EC) are predicted by structure-based 

template transfer. 
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Supplementary Figure 9 

 

Relationship between the eTM-score/eRMSD and the actual TM-score/RMSD to the native, and the distribution of the 

estimation error for TM-score and RMSD. 

 

(a) The relationship between the actual TM-score and the eTM-score of the first model generated by I-TASSER-MTD, 

where TP, FP, TN, and FN represent the number of true positive, false positive, true negative, and false negative cases with 

correct global folds (TM-scores > 0.5). (b) The relationship between the eRMSD and the actual RMSD of the first model 

generated by I-TASSER-MTD. (c) Distribution of the estimation error for TM-score. (d) Distribution of the estimation error 

for RMSD. 
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Supplementary Figure 10 

 

Representative examples show different predicted models with different eTM-scores, where gray and color models indicate 

native structure and predicted models, respectively, and different domains in predicted models are marked by different 

colors. 

 

(a) A protein (PDBID: 1q2vA) consists of 2 discontinuous domains and 1 continuous domain. All domains were assembled 

with correct orientations in the first model, and thus obtaining both high TM-score = 0.96 and eTM-score = 0.93. The red 

domain has some shift in the second model compared to the native, resulting in reduced TM-score = 0.82 and eTM-score = 

0.85 for the full-length model. In the third model, the yellow and red domains were assembled with completely wrong 

orientations, which results in lower TM-score = 0.49 and eTM-score = 0.44 for the full-length model. (b) A protein (PDBID: 

1bgxT) consists of 2 discontinuous domains and 2 continuous domains. In the first model, all domains were assembled in 

completely correct orientations, resulting in a full-length model with very high TM-score = 0.99 and eTM-score = 0.99. In 

the second model, the cyan and purple domains were assembled with some shifts compared to the native, which results in a 

reduced TM-score = 0.84 and eTM-score = 0.82 for the full-length model. The red and green domains assembled in 

completely wrong orientations in the third model, leading to a low TM-score = 0.42 and a low eTM-score = 0.41 for the 

full-length model. 

  



11 
 

 

 

Supplementary Figure 11 

 

A representative example (PDBID: 1we3F) showing different models generated by introducing different numbers of random 

mutations. Model 1 is generated by the original sequence without introducing any mutations, which obtains a high 

eTM-score = 0.99 and real TM-score = 0.99. When 1 random mutation is introduced, the model (model 2) is not impacted 

and also obtains a very high eTM-score = 0.99 and TM-score = 0.99. When 5 random mutations are introduced, the accuracy 

of one of the domain models (blue) is reduced with some local incorrect folding regions, resulting in a model (model 3) with 

reduced eTM-score = 0.90 and TM-score = 0.94. When 10 random mutations are introduced, the accuracy of the red domain 

is reduced and the inter-domain contacts/distances predicted by DeepPotential is impacted, which results in a model (model 

4) with a low eTM-score= 0.53 and a low TM-score = 0.51. 
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Supplementary Figure 12 

 

Pipeline for multi-domain protein structure modeling using cryo-EM density maps in I-TASSER-MTD. Starting from the 

query sequence, the domain boundary is first predicted by FUpred and ThreaDom, and the model of each individual domain 

is generated by D-I-TASSER. Each domain model is then independently fit into the density map using L-BFGS guided by 

the density correlation between the domain model and the density map. Meanwhile, the analogous full-length structure 

templates are identified by TM-align. The initial full-length model is created according to models generated by domain-map 

fitting and the full-length templates. The domain rigid-body assembly is subsequently performed to optimize the position and 

orientation of each domain in the density map, and the flexible regions for remodeling are determined according to the 

density correlation score of each region. Next, the atom-, segment-, and domain-level refinement are performed using REMC 

simulations to simultaneously improve the full-length model and the individual domain models. Finally, the full-length 

model with the lowest energy is selected for side-chain repacking by FASPR and FG-MD. 
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Supplementary Figure 13 

 

The 5 models generated by I-TASSER-MTD and AlphaFold2 for the human protein Pin1. Models are represented in cartoons 

with blue to red running from N- to C-terminal. The 5 models generated by I-TASSER-MTD are highly diverged and contain 

both ‘extend’ and ‘compact’ states which mimic the alternative conformational distributions as observed by Born et al6, while 

the 5 models constructed by AlphaFold2 all converge to a single ‘compact’ state. 
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Supplementary Figure 14 

 

Example of the domain boundary prediction (PDBID: 7m6b), which contains a discontinuous domain (1-60,154-287). 

Residues 1-60 belong to the first segment of the discontinuous domain (marked as D1-1 in the contact map). The second 

segment of the discontinuous domain contains the residues from 154 to 287 (marked as D1-2 in the contact map). 
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Supplementary Figure 15 

 

Example of the domain boundaries predicted by ThreaDom. The first column is the curve of the domain conservation score 

(DCS), where the blue line and red line indicate the DCS and the cutoff of the DCS. The second column shows the predicted 

domain boundaries. 
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Supplementary Figure 16 

 

The precision of COFACTOR predictions versus the confidence score for each category of function annotation. 

 

(a) The relationship between the precision and the confidence score of GO terms. (b) The relationship between the precision 

and the confidence score of ligand-binding (LB) sites. (c) The relationship between the precision and the confidence score of 

EC numbers, where different columns represent different numbers of digits of the EC number. 
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Supplementary Figure 17 

 

Predicted function of the first domain (1-66) of the example protein (PDBID: 1fx7A) 

 

(a) Top ten analogous structures that are structurally close to the domain. (b) Results of the predicted GO terms including 

molecular function (1), biological process (2), and cellular component (3). (c) Results of the predicted EC numbers from the 

top-five homologous enzyme templates. (d) Results of the predicted ligand-binding site from the top 5 homologous 

templates. 
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Supplementary Figure 18 

 

Predicted function of the second domain (67-141) of the example protein (PDBID: 1fx7A) 

 

(a) Top ten analogous structures that are structurally close to the domain. (b) Results of the predicted GO terms including 

molecular function (1), biological process (2), and cellular component (3). (c) Results of the predicted EC numbers from the 

top-five homologous enzyme templates. (d) Results of the predicted ligand-binding site from the top 5 homologous 

templates. 
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Supplementary Figure 19 

 

Predicted function of the third domain (142-230) of the example protein (PDBID: 1fx7A) 

 

(a) Top ten analogous structures that are structurally close to the domain. (b) Results of the predicted GO terms including 

molecular function (1), biological process (2), and cellular component (3). (c) Results of the predicted EC numbers from the 

top-five homologous enzyme templates. (d) Results of the predicted ligand-binding site from the top 5 homologous 

templates. 
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Supplementary Tables 

 

Supplementary Table 1. Description of the main individual programs employed in the I-TASSER-MTD pipeline. 

 

Name Description 

LOMETS27 A meta-threading program for protein template identification from the PDB by combining 11 

state-of-the-art threading algorithms including deep-learning contact-based method (CEthreader8), 

sequence profile-based methods (SP39, PPAS10, FFAS3D11, MUSTER12, Neff-MUSTER, 

SparksX13, and PROSPECT214), and profile HMM-based methods (HHpred15, HHsearch16, and 

PRC17).  

ThreaDom18,19 A method for domain boundary prediction based on the domain information conserved in the 

threading templates identified by LOMETS2. 

FUpred20 A protein domain boundary predictor by maximizing the number of intra-domain contacts and 

minimizing the number of inter-domain contacts that are predicted by a deep residual 

convolutional neural network model. 

DeepMSA21 A method to generate high quality multiple sequence alignment (MSA) by iteratively searching 

the query through multiple whole-genome and meta-genome sequence databases.  

DeepPotential22 A deep residual network-based predictor for predicting the protein intra-domain and inter-domain 

residue-residue spatial restraints including contacts, distances, torsion angles, and 

hydrogen-bonding networks. 

DEMO23 An algorithm for assembling component domain models into full-length protein structures by 

coupling deep-learning inter-domain restraints with analogous templates identified by 

domain-level structural alignments using TM-align24 from the PDB. 

I-TASSER/D-I-TA

SSER25/I-TASSER

-MTD 

I-TASSER26,27 is a method for the protein structure modeling through iterative threading fragment 

assembly simulations, where the threading templates are identified from the PDB by LOMETS10. 

D-I-TASSER is a significantly improved version of I-TASSER by incorporating the deep-learning 

spatial restraints to guide the simulations. I-TASSER-MTD is a fully automated pipeline built on 

D-I-TASSER and DEMO for multi-domain protein structure prediction and structure-based 

function annotation from sequence alone. 

COFACTOR28,29 A program to infer three categories of protein functions including gene ontology, enzyme 

commission and ligand-binding sites from analogous and homologous function templates, 

sequence profile alignments, and protein–protein interaction networks. 
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Supplementary Table 2. Performance of D-I-TASSER on the CASP14 individual domain targets when only using contacts 

predicted by different methods. 

 

 ResPre DeepPLM ResTriplet TripletRes NeBcon Combined 

TM-score 0.552 0.553 0.559 0.567 0.572 0.586 

RMSD (Å) 9.1 9.0 8.9 8.8 8.7 8.0 

#TM-score>0.5 54 55 55 57 57 59 
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Supplementary Notes 

 

Supplementary Note 1. Combining multiple contact restraints for D-I-TASSER 

Five different in-house contact predictors, ResPre1, DeepPLM2, ResTriplet3, TripletRes4, and NeBcon5, are employed 

and combined together to guide the D-I-TASSER modeling simulation. Due to the different scoring schemes used by 

different contact predictors, we chose different confidence score cutoffs for different predictors that correspond to a contact 

accuracy of at least 0.5 for different ranges, including short-, medium-, and long-range contacts with sequence separation 

|𝑖 − 𝑗| ≤ 11, 12 ≤ |𝑖 − 𝑗| ≤ 23 , and |𝑖 − 𝑗| ≥ 24, respectively. For each individual contact predictor 𝑝 , all of the 

residue-residue pairs are firstly ranked in descending order according to the confidence scores predicted by the predictor. A 

residue-residue pair (𝑖, 𝑗) is selected into the contact pool if 𝑐𝑜𝑛𝑝(𝑖, 𝑗) > 𝑐𝑜𝑛𝑐𝑢𝑡
𝑝
(𝑟), where 𝑐𝑜𝑛𝑝(𝑖, 𝑗) is the confidence 

score of the residue-residue (𝑖, 𝑗) predicted by predictor 𝑝, and 𝑐𝑜𝑛𝑐𝑢𝑡
𝑝 (𝑟) is the confidence score cutoff for the predictor 

𝑝 for the range type 𝑟 ∈{short-, medium-, and long-range}; or if 𝐿𝑐𝑝 < 𝐿𝑐𝑢𝑡
𝑝

, where 𝐿𝑐𝑝 is the currently selected number 

of contacts by predictor 𝑝, and 𝐿𝑐𝑢𝑡
𝑝

 is the cutoff for the minimum number of selected contacts by predictor 𝑝. All the 

confidence cutoffs and parameter sets were determined over a set of 243 non-redundant training proteins. 𝐿𝑐𝑢𝑡
𝑝 = 𝐿 for all 

predictors; 𝑐𝑜𝑛𝑐𝑢𝑡
𝑝 (𝑠ℎ𝑜𝑟𝑡) = 0.647, 0.809, 0.607, 0.604, 0.483, and 0.512; 𝑐𝑜𝑛𝑐𝑢𝑡

𝑝 (𝑚𝑒𝑑𝑖𝑢𝑚) = 0.622, 0.789, 0.581, 0.598, 

0.626, and 0.652; 𝑐𝑜𝑛𝑐𝑢𝑡
𝑝 (𝑙𝑜𝑛𝑔) = 0.678, 0.806, 0.654, 0.652, 0.849, and 0.906 for TripletRes, ResTriplet, ResPRE, 

DeepPLM, NeBconB, and NeBconA, respectively. 

The confidence score of the selected contacts from different predictors are renormalized. For the contact of each residue 

pair (𝑖, 𝑗), for example, the new normalized confidence score is calculated according to the confidence score of different 

predictors: 

𝐶𝑖,𝑗 =
1

𝑁
∑𝑤𝑝(𝑖, 𝑗)

𝑁

𝑝=1

                                                                               (S1) 

where 

𝑤𝑝(𝑖, 𝑗) = {
2.5 × 𝐹 × [1 + 𝑐𝑜𝑛𝑝(𝑖, 𝑗) − 𝑐𝑜𝑛𝑐𝑢𝑡

𝑝 (𝑟)], if predictor 𝑝 selects out (𝑖, 𝑗)

 0,                                                                            otherwise                                   
                        (S2) 

𝑁 is the number of contact predictors; 𝐹 = 0.62, 1.25, 6.25, and 5.0 for Trivial, Easy, Hard, and Very hard target type 

determined by LOMETS27, respectively, when the number of effective sequences in the MSAs (Neff)30 > 50; while 𝐹 = 

0.62, 1.5, 3.0, and 3.75 when Neff ≤50. 

 To verify the performance of the combined contacts, we test D-I-TASSER on all the 91 CASP14 individual domain 

targets by using contacts predicted by different predictors. Here, we only use the contact to guide the modeling simulation of 

D-I-TASSER to remove the impact of other restraints, and templates with a sequence identity >30% to the query are 

excluded. Supplementary Table 2 indicates that the average TM-score and RMSD of the model generated by D-I-TASSER 

with combined contacts are 0.586 and 8.0Å, which is better than that when using contacts predicted by any individual 

predictors as it obtains higher TM-score for the majority cases (Supplementary Fig. 6a). For example, D-I-TASSER with 

combined contacts achieves higher TM-score on 79.1% cases compared to D-I-TASSER using ResPre contacts. In addition, 

D-I-TASSER with combined contacts correctly predicted the global folds with TM-score >0.5 on 59 out of 91 cases, which 

is also higher than that by using contacts from the individual predictor. Supplementary Fig. 6b shows an example (T1092-D2) 

of models generated by using different contacts. The model constructed by employing combined contacts from different 

methods obtains a TM-score/RMSD of 0.93/1.5Å, which is better than the best model (TM-score =0.89, RMSD = 2.0Å) built 

by using contacts predicted by the individual predictor (ResTriplet).   



23 
 

Supplementary Note 2. Force Filed for domain assembly simulations 

The force field for domain assembly is a sum of the 7 terms: 

𝐸 = ∑ ∑ (𝑤1𝐸𝑑𝑡(𝑚,𝑛) + 𝑤2𝐸𝑐𝑙(𝑚,𝑛) + 𝑤3𝐸𝑐𝑡(𝑚, 𝑛)+𝑤4𝐸𝑑𝑝(𝑚, 𝑛) + 𝑤5𝐸𝑏𝑑(𝑚,𝑛) + 𝑤6𝐸𝑖𝑡(𝑚, 𝑛))   

𝑁dom

𝑛=1

𝑁dom

𝑚=1

+ 𝑤7𝐸𝑡𝑟                                                                                                                                                                          (S3) 

where m and n are domain index, and 𝑁dom is the total number of domains. 

The first term is the inter-domain 𝐶𝛽  distance map as predicted by DomainDist: 

𝐸dt(𝑚, 𝑛) = −∑∑log (𝑃 (𝑖, 𝑗, 𝑘(𝑑𝑖𝑗)) + 𝜀)

𝐿𝑛

𝑗=1

𝐿𝑚

𝑖=1

                                                  (S4) 

where 𝐿𝑚 and 𝐿𝑛 represent the sequence length of the m-th and n-th domain, respectively. 𝑑𝑖𝑗 is the distance between the 

i-th 𝐶𝛽 (𝐶𝛼 for Glycine) atom in the m-th domain and j-th 𝐶𝛽 atom in the n-th domain, 𝑃 (𝑖, 𝑗, 𝑘(𝑑𝑖𝑗)) is the predicted 

probability of the distance 𝑑𝑖𝑗  located in the k-th distance bin, and 𝜀 = 1𝐸 − 4  is the pseudo count to offset 

low-probability bins. In the calculation, we only consider atom pairs with probability peak located in [2Å, 20Å], and these 

atom pairs with predicted probabilities >0.5 in the last bin [>20 Å], which represents a low prediction confidence in [2Å, 

20Å], are excluded. 

The second term is designed to eliminate steric clashes between domains, i.e., 

𝐸𝑐𝑙(𝑚, 𝑛) =∑∑{

1

𝑑𝑖𝑗
,      𝑖𝑓 𝑑𝑖𝑗 < 𝑑𝑐𝑢𝑡

0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

𝐿𝑛

𝑗=1

𝐿𝑚

𝑖=1

                                                                    (S5) 

where 𝑑cut = 3.75 Å is set as the clash distance cutoff.  

The third term is the generic domain-domain contact energy computed by: 

𝐸𝑐𝑡(𝑚, 𝑛) =∑∑

{
 
 
 

 
 
 
−𝑢𝑖𝑗 ,                                                 if 𝑑𝑖𝑗 < 8Å

−
1

2
𝑢𝑖𝑗 [1 − sin (

𝑑𝑖𝑗 − 9

2
𝜋)] ,   if 8Å ≤ 𝑑𝑖𝑗 ≤ 10Å

1

2
𝑢𝑖𝑗 [1 − sin (

𝑑𝑖𝑗 − 45

70
𝜋)] ,    if 10Å < 𝑑𝑖𝑗 ≤ 80Å

𝑢𝑖𝑗 ,                                                   otherwise

𝐿𝑛

𝑗=1

𝐿𝑚

𝑖=1

                             (S6) 

where the scale parameter 𝑢𝑖𝑗 depends on the hydrophobic and hydrophilic features of the residue pairs. 𝑢𝑖𝑗 = 0.1, if both 

of the residues are hydrophobic (ALA, CYS, VAL, ILE, PRO, MET, LEU, PHE, TYR, TRP); 𝑢𝑖𝑗 = 0.01, if the two 

residues are hydrophilic (SER, THR, ASP, ASN, LYS, GLU, GLN, ARG, HIS); or 𝑢𝑖𝑗 = 0.05, otherwise. This energy item 

is used to control the inter-domain distance, which will push the two domains together if they are two far away each other. 

The fourth term is the domain-domain distance profile deduced from the templates identified by TM-align, which is 

calculated by: 

𝐸𝑑𝑝(𝑚, 𝑛) = −∑∑
1

𝑇𝑖𝑗
∑

1

|𝑑𝑖𝑗 − 𝐷𝑖𝑗
𝑡 |

𝑇𝑖𝑗

𝑡=1

 

𝐿𝑛

𝑗=1

𝐿𝑚

𝑖=1

                                                                     (S7) 

For a residue pair (i and j, with i from N-terminal domain and j from C-terminal domain), 𝑇𝑖𝑗 is the number of templates 

that satisfy the following two conditions: (1) the template has both residue i and j aligned by TM-align; (2) 0.6|𝑖 − 𝑗| <
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|𝑎𝑖 − 𝑎𝑗| < 1.5|𝑖 − 𝑗|, where 𝑎𝑖  and 𝑎𝑗 are the indexes of the aligned residues of i and j on the template. 𝐷𝑖𝑗
𝑡  is the 

C𝛼  distance between the residue 𝑎𝑖  and 𝑎𝑗 in the t-th template. 

The fifth term is the domain boundary energy is defined as  

𝐸𝑏𝑐(𝑚, 𝑛) = (𝑏𝑚𝑛 − 𝑏0)
2                                                                                     (S8) 

where 𝑏𝑚𝑛 is the C𝛼 distance between two consecutive domains, and 𝑏0 = 3.8 Å is the standard length of C𝛼-C𝛼 bond. 

The sixth term is the domain interface energy is defined as  

𝐸𝑖𝑡(𝑚, 𝑛) =∑∑

{
 
 
 

 
 
 
−𝑈𝑖𝑗,                                                 if 𝑑𝑖𝑗 < 18Å

−
1

2
𝑈𝑖𝑗 [1 − sin (

𝑑𝑖𝑗 − 19

2
𝜋)] ,   if 18Å ≤ 𝑑𝑖𝑗 ≤ 20Å

1

2
𝑈𝑖𝑗 [1 − sin (

𝑑𝑖𝑗 − 50

60
𝜋)] ,    if 20Å < 𝑑𝑖𝑗 ≤ 80Å

𝑈𝑖𝑗,                                                   otherwise

𝐿𝑛

𝑗=1

𝐿𝑚

𝑖=1

                               (S9)  

where 𝑈𝑖𝑗 is the confidence score of the i-th residue and j-th residue with the C𝛼 distance <18 Å. 

The last term in is the local domain distance restraint: 

𝐸𝑡𝑟 =
1

𝐿
∑𝑑

𝐿

𝑖=1

(𝑆𝑖 , 𝑆′𝑖)                                                                     (S10) 

where 𝑑(𝑆𝑖 , 𝑆′𝑖) represents the distance between the i-th C𝛼  atom (𝑆𝑖 ) and its corresponding atom 𝑆′𝑖  in the initial 

structure generated in the template superposition process, and 𝐿 is the length of the protein. This term is to prevent the 

assembly deviating too much from the orientation obtained from the template.  

The weighting parameters in Eq. (S3) are determined by maximizing the correlation between total energy and RMSD to 

the native on the structure decoys over a training set of 425 non-redundant proteins. This resulted in 𝑤1 = 5, 𝑤2 = 0.2, 

𝑤3 = 0.1, 𝑤4 = 0.02, 𝑤5 = 0.03, 𝑤6 = 3.0, and 𝑤7 = 0.15.  
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Supplementary Note 3. Estimated TM-score of D-I-TASSER predicted models 

The accuracy of the D-I-TASSER structure models is calculated by the estimated TM-score (eTM-score): 

            eTM˗score = 𝑤1ln(
𝑀(𝑚)

𝑀tot
×

1

〈RMSD〉𝑚
) +𝑤2ln(

1
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pre
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𝑤neff = min(max(0.66,0.1(log2(𝑁𝑒𝑓𝑓) − 3)) , 1)                                                          (S12) 
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1
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1
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𝑚=1,𝑚≠𝑛

𝑁

𝑛=1
                                                            (S13) 

where 𝑀tot is the total number of structure decoys used in the SPICKER clustering; M is the number of decoys in the top 

cluster; 〈RMSD〉𝑚 is the average RMSD of the decoys to the m-th cluster centroid. These terms are used to evaluate the 

degree of convergence of the structure assembly simulations. 𝑍(𝑡) is the score of the top template identified by the t-th 

threading method in LOMETS2; 𝑍0(𝑡) is the Z-score cutoff of the t-th threading method to distinguish between good and 

bad templates; K is the total number of threading methods employed in LOMTES. These Z-score related measures describe 

the significance of the LOMETS2 threading templates and alignments. 𝑁pred is the number of predicted contacts applied to 

guide the REMC simulations of D-I-TASSER, and 𝑂𝑚
pre

 is the number of overlapped contacts between the final predicted 

model and the predicted contacts. These two terms is used to measure the contact satisfaction rate. n is the number of 

distances of the residue pairs used to guide the D-I-TASSER simulation; 𝑑𝑖,𝑗
pre

 and 𝑑𝑖,𝑗
𝑚  are the distances of the residue pair 

(i,j) in the predicted distance map and the reported model, respectively. These terms are applied to assess how closely the 

distances in the reported model match the predicted ones by DeepPotential. 𝑤neff is a weight calculated according to the 

number of effective sequences in the MSAs (Neff), where Neff is calculated by Eq. (S13). L is the length of a query protein, 

N is the number of sequences in the MSA, 𝑆𝑚,𝑛 is the sequence identity between the m-th and n-th sequences, and I[ ] 

represents the Iverson bracket, which means 𝐼[𝑆𝑚,𝑛 ≥ 0.8] = 1 if 𝑆𝑚,𝑛 ≥ 0.8, and 0 otherwise. 𝑤1 = 0.047, 𝑤2 = 0.063, 

𝑤3 = 0.077, 𝑤4 = −0.185, and 𝑤5 = 0.740 are free parameters. 

  



26 
 

Supplementary Note 4. Estimated RMSD of I-TASSER-MTD predicted models 

The estimated RMSD (eRMSD) of the I-TASSER-MTD predicted models can be calculated by 

           eRMSD(𝑘) = 𝑤1ln(
𝑀(𝑘)

𝑀tot
×

1

〈RMSD〉𝑘
) + 𝑤2ln(

1

10
∑

𝑇˗score(𝑖)

𝑇˗score0

10

𝑖=1

)+ 𝑤3𝑤neffln(
1

𝑇
∑|𝑑𝑡

pre
− 𝑑𝑡

model(𝑘)|

𝑇

𝑡=1

)

+𝑤4𝑤neffln(
𝑂(𝐼pre, 𝐼model)𝑘

𝑁(𝐼pre)
) + 𝑤5

1

𝑁dom
∑ eTM˗scoredom(𝐷)

𝑁dom

𝐷=1

+ 𝑤6

+𝑤7ln (𝐿)                            (S14) 

The first term evaluates the degree of convergence of the domain assembly simulations, where 𝑀tot is the total number of 

full-length decoys generated in the domain assembly simulations, 𝑀(𝑘) is the number of structure decoys with RMSD 

<1.5Å to the kth full-length model, and 〈RMSD〉𝑘  denotes the average RMSD between these decoys and the kth reported 

model. The second term assesses the quality of the full-length template, where 𝑇˗score(𝑖) is the template score of the ith 

full-length template, which is calculated as the harmonic mean of the TM-scores between the domain models and the 

full-length template that is used for DEMO-based domain assembly, and 𝑇˗score0=0.85 is the cutoff used to distinguish 

good from bad templates. The third term assesses how closely the distances in the reported model match the predicted 

distances by DeepPotential, where T is the number of predicted inter-domain distances used to guide the domain assembly, 

and 𝑑𝑡
pre

 and 𝑑𝑡
model(𝑘) are the distances of the tth residue pair in the predicted distance map and the kth reported model, 

respectively. The fourth term accounts for the domain-domain interface satisfaction rate of the predicted interface map in the 

reported model, where 𝑁(𝐼pre) is the number of predicted domain-domain interfaces and 𝑂(𝐼pre, 𝐼model)𝑘 is the number 

of overlapped interfaces between the predicted interface map and the kth reported model. Since restraints in the third and 

fourth terms are predicted using MSAs, 𝑤neff is a weight associated with the quality of the MSA and calculated based on 

the number of effective sequences (neff, see Supplementary Eq. S12). Finally, the fifth term accounts for the quality of 

individual domain models from D-I-TASSER, where 𝑁dom is the total number of domains and eTM˗scoredom(𝐷) is the 

estimated TM-score of the Dth domain model from D-I-TASSER (Supplementary Note 3). L is the sequence length. 𝑤1 =

−1.40 , 𝑤2 = −2.74 , 𝑤3 = 4.78 , 𝑤4 = −1.19 , 𝑤5 = −16.43 , 𝑤6 = 0.0 , and 𝑤7 = 2.66  are the weighting factors, 

which are optimized using an improved differential evolution algorithm31 to minimize the error between the eRMSD and the 

actual RMSD of the decoys to the native structure on the DEMO training set of 425 non-redundant multi-domain proteins. 
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Supplementary Note 5. A 3-gradient contact potential 

This energy term was developed to use the restraints from the predicted contacts or user provided contact/distance 

restraints. It is defined as the 3-gradient contact potential, which can be calculated by 

𝐸con(𝑑𝑖𝑗) =

{
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                       (S15) 

where 𝑑𝑖𝑗 is the 𝐶𝛼 distance between the i-th and j-th residues of the model, 𝑑cut is the distance cutoff of the contact or 

defined by the user, and D=𝑑cut+2.0 is a constant. 𝑈𝑖𝑗 and 𝑈𝑖𝑗
′  are the weights of residue pair, which are defined as 

𝑈𝑖𝑗 = ln (
𝐶𝑖𝑗
0.22

) , 𝑈𝑖𝑗
′ = ln (

𝐶𝑖𝑗
0.7
)                                                                 (S16) 

where 𝐶𝑖𝑗 is the confidence score of the residue pair (𝑖𝑗). 
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Supplementary Note 6. Confidence score of Gene Ontology, Enzyme Commission, and ligand-binding sites prediction 

 The Gene Ontology (GO) term, Enzyme Commission (EC) numbers, and ligand-binding sites of the full-length protein 

and the individual domains are predicted by our latest version of COFACTOR28,29. Here, we briefly describe the definition of 

the confidence score for each prediction. 

GO term: The GO prediction consists of three pipelines for structure-, sequence- and PPI-based predictions 

(Supplementary Fig. 7). In the structure-based GO prediction, the query structure is compared to proteins in the BioLiP 

library32, which contains a non-redundant set of entries annotated with known GO terms, through the local and global 

structural alignments based on TM-align24. The structure-homology based confidence score for a particular GO term λ is 

calculated by 

𝐶scorestructure
GO (𝜆) = 1 −∏(1 − 𝐹𝐶score𝑖(𝜆))

𝑁(𝜆)

𝑖=1

                                                    (S17) 

where 𝑁(𝜆) is the number of templates associated with the GO term λ, 𝐹𝐶score𝑖(𝜆) is the confidence score of the ith 

template associated with the GO term λ, which is defined as 

FCscore =
2

1 + exp (−(0.25 × 𝐿sim × 𝑆𝑆bs + 𝑇𝑀 + 2.5 × 𝐼𝐷))
− 1                                     (S18) 

where ID is the sequence identity between the query protein and template in the aligned region determined by TM-align, and 

𝑆𝑆bs is the sequence identity at the binding site. TM is the TM-score between the structure of the query protein and the 

template. 𝐿sim is the local structure similarity between the query protein and template, which can be calculated by 

𝐿sim =
1

𝑁𝑡
∑

(

 
1

1 + (
𝑑𝑖
𝑑0
)
2 +𝑀𝑖

)

 

𝑁ali

𝑖=1

                                                                  (S19) 

where 𝑁𝑡 is the number of residues in the active/binding sites of the template, 𝑁ali is the number of aligned residue pairs, 

𝑑𝑖  is the 𝐶𝛼  atom distance between the ith aligned residue pair, 𝑑0 = 3Å  is the distance cutoff, and 𝑀𝑖  is the 

BLOSUM62 substitution matrix score33 between the ith residue pair. 

In the sequence-based GO prediction, the query sequence is searched against the UniProt-GOA database through both 

sequence and sequence-profile alignments by BLAST34 and PSI-BLAST35, respectively. The sequence-based confidence 

score for a particular GO term λ is defined as 

𝐶scoresequence
GO (𝜆) = 𝑤 × GOfreqblast(𝜆) + (1 − 𝑤) × GOfreqpsiblast(𝜆)                                (S20) 

where 𝑤  is the weight and equals to the maximum sequence identity between the query and all the templates. 

GOfreqblast(𝜆) is the confidence score for the GO term λ resulting from the BLAST search, which can be calculated by 

GOfreqblast(𝜆) =
∑ 𝑠𝑘(𝜆)
𝑁(𝜆)
𝑘=1

∑ 𝑠𝑘
𝑁
𝑘=1

                                                                        (S21) 

where 𝑁 is the number of identified templates, 𝑠𝑘  is the sequence identity between the query and the kth template, 𝑁(𝜆) 

and 𝑠𝑘(𝜆) are those associated with the GO term λ. GOfreqpsiblast(𝜆) is the confidence score for the GO term λ calculated 

based on the template identified by PSI-BLAST, and it is defined in the same way as in BLAST. 

In the protein-protein interaction (PPI) based GO prediction, the query is first mapped to the STRING PPI database36 by 

BLAST; only the BLAST hit with the most significant E-values is subsequently considered. GO terms of the interaction 

partners, as annotated in the STRING database, are then collected and assigned to the query protein. The confidence score 

for GO term λ mapped by PPI is defined as 
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𝐶scorePPI
GO (𝜆) = 𝑆𝑞 ×

∑ 𝑠𝑡𝑟𝑘(𝜆)
𝑁(𝜆)
𝑘=1

∑ 𝑠𝑡𝑟𝑘
𝑁
𝑘=1

                                                               (S22) 

where 𝑁 is the number of interacting partners, 𝑠𝑡𝑟𝑘 is the confidence score of interaction between the query and the kth 

interaction partner as assigned by the STRING database, 𝑆𝑞  is the sequence identity in the first step of BLAST alignment 

between the query sequence and the mapped STRING entry, and 𝑁(𝜆) and 𝑠𝑡𝑟𝑘(𝜆) are those associated to a specific GO 

term λ. 

 The final confidence sore of the GO prediction is obtained by combining the structure-, sequence- and PPI-based 

confidence sore: 

𝐶scoreGO(𝜆) = 1 −∏(1 − 𝐶score𝑚
GO(𝜆)𝑤𝑚

𝑚

)                                                    (S23) 

where 𝑚 ∈ {structure, sequece, PPI} , 𝑤𝑚  is the weight for each of the three methods, with 𝑤structure = 1 − 𝑤 , 

𝑤sequence =  𝑤PPI = 1, where 𝑤 equals to the maximum sequence identity among identified function templates. 

EC number: The EC number prediction is similar to the structure-based GO prediction. Enzymatic homologs are 

identified by aligning the target structure to the enzyme structures in the BioLiP library according to TM-align, where the 

active site residues mapped from the Catalytic Site Atlas database37. The confidence score for each predicted EC number is 

estimated based on the global and local similarity between the target and the top template hits:  

𝐶scoreEC =
2

1 + exp (−(0.25 × 𝐿sim × 𝑆𝑆bs + 𝑇𝑀 + 2.5 × 𝐼𝐷))
− 1                                     (S24) 

where TM is the TM-score between the structure of the query and the template, 𝐼𝐷 is the corresponding sequence identity, 

𝑆𝑆bs is the sequence identity at the active sites, and 𝐿sim is the local structure similarity as defined in Eq. (S19). 

Ligand-binding site: The ligand-binding prediction includes three steps28,29. First, functional homologies are identified 

by matching the query structure through the BioLiP library, which contains a non-redundant set of structure templates 

harboring in the known ligand-binding sites for interaction between receptor proteins and small molecule compounds, short 

peptides and nucleic acids. The initial binding sites are then mapped to the query from the individual templates based on the 

structural alignments. Next, the ligands from each individual template are superposed to the predicted binding sites on the 

query structure using superposition matrices from a local alignment of the query and template binding sites, and the ligand 

poses are refined by a short Metropolis Monte Carlo simulation through rigid-body rotation and translation. Finally, the 

consensus binding sites are obtained by clustering of all ligands that are superposed to the query structure, based on distances 

of the centers of mass of the ligands using a cutoff of 8Å. Different ligands within the same binding pocket are further 

grouped by the average linkage clustering with chemical similarity, using the Tanimoto coefficient38 with a cutoff of 0.7. The 

model with the highest ligand-binding confidence score 𝐶scoreLB defined as follow among all the clusters is selected:  

𝐶scoreLB =
2

1 + exp (−
𝑀
𝑀tot

(0.25 × 𝐿sim + 𝑇𝑀 + 0.25 × 𝐼𝐷 +
2

1 +𝐷))
− 1                              (S25) 

where 𝑀 is the number of ligands in the ligand cluster, 𝑀tot is the total number of ligands collected from all homologous 

templates, 𝐿sim is the local similarity at the binding site defined in Eq. (S19), 𝑇𝑀 is TM-score between query and template, 

𝐼𝐷 is the sequence identity between query and template in the structurally aligned region and 𝐷 is the average distance 

between ligands within the cluster. 
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