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Supplementary Method 1│ Device-level supercapacitor 

Fabrication of symmetric supercapacitor cell  

1. To prepare electrode dispersion, add 10.0 mg of active material, 1.25 mg of carbon black (CB), 1.25 mg of 

poly(vinylidine difluoride) (PVDF), and then 1 mL of 1-methylpyrrolidinone into a 4-mL glass vial. The ratio of 

NPC:CB:PVDF in the electrode dispersion is set at 8:1:1 (Fig. 1). 

2. Tightly close the 4-mL glass vial with its cap and sonicate the mixture for 1 hour without stirring. 

▲ CRITICAL Adsorbed active materials on the wall of the glass vial can lead to variation in the concentration of 

active material in the electrode dispersion, and eventually decrease in specific capacitance.  

3. After sonication, carefully drop-cast first 100 µL of electrode dispersion onto the top side of two different current 

collectors, and dry them in a vacuum oven at 60 °C. 

6. After drying, carefully drop-cast the second 100 µL of electrode dispersion onto the top side of the two different 

current collectors and dry them again in the vacuum oven at 60 °C for 3 h. 

▲ CRITICAL The weight loading of active material is 2 mg per electrode. 

▲ CRITICAL Homogeneous deposition of active material on the current collector must be ensured. 

7. Unscrew and open HS test cell and carefully place one current collector with deposited electrode facing the top. 

8. Wet glass microfiber filter paper cut into a circle with a diameter of 1.5 cm in 1 M H2SO4, and carefully place it on 

top of the electrode side of the current collector in the HS test cell. 

9. Carefully place the other current collector with deposited electrode facing the glass microfiber filter paper in the 

HS test cell. 

10. Carefully close the HS test cell and screw the pins to firmly fix the cell. 

 

Equations for the capacitance of two-electrode symmetric supercapacitor cell 

 

𝑪𝐠 =  
𝑰 ×  ∆𝒕

𝑴 × ∆𝑽
 

 

where ‘Cg’ is gravimetric capacitance (F g-1), ‘I’ is current (A), ‘t’ is discharge time (s), ‘M’ is the total mass of active 

materials on both electrodes (g), ‘V’ is the potential window (V). 

 

𝑪𝐯 =  𝑪𝐠 × 𝝆 

 

where ‘CV’ is volumetric capacitance (F cm-3), and ‘𝝆’ is the density of active material (g cm-3). 

 

 

 

 

 



 

Supplementary Table 1 │ Summary of physical and electrochemical properties of the MOF-derived NPC 

 Type of MOF-derived NPC 

Parameters NPC-700 NPC-800 NPC-900 NPC-1000 HNPC 
NC@GC 

(0.05) 

NC@GC 

(0.35) 
HPC-2.5 HPC-5.0 

Surface Area 

(m2 g-1) 
1032 1678 1823 1591 788 1276 813 412 563 

Pore volume 

(cm3 g-1) 
0.80 0.97 1.40 0.89 1.41 1.78 0.89 0.52 0.71 

Nitrogen 

content (at. %) 
14.2 13.6 11.9 3.5 2.7 10.6 8.5 7.8 7.7 

Specific 

capacitance 

(F g-1) 

16 

(5 mV s-1) 

165 

(5 mV s-1) 

217 

(5 mV s-1) 

153 

(5 mV s-1) 

113 

(2 A g-1) 

270 

(2 A g-1) 

149 

(2 A g-1) 

159 

(2 A g-1) 

271 

(2 A g-1) 

 

  



Supplementary Table 2 │ Summary of previously reported MOF-derived nanoporous carbons and applications 

Reference Precursor Carbon Application 

1 ZIF-8@ZIF-67 
CoP nanoparticle embedded N-doped carbon 

nanotube hollow polyhedron 
Hydrogen evolution reaction 

2 SOM ZIF-67 3DOM CoSe2@C Aluminium ion battery 

3 ZIF-8 Ni SAs/N-C CO2 reduction reaction 

4 ZIF-8@ZIF-67 ZnCo2O4@N-doped carbon/carbon nanotube Oxygen reduction reaction 

5 Fe-doped ZIF Fe/N-doped carbon Oxygen reduction reaction 

6 ZIF-8/PAN N-doped carbon Capacitive deionization 

7 Fe-doped ZIF-8 Fe/N-doped carbon CO2 reduction reaction 

8 ZIF-8/PS M-PNC Oxygen reduction reaction 

9 Zn-ZIF-L NGM Oxygen reduction reaction 

10 TPI@ZIF-8(SIO2) Fe/N-doped carbon Oxygen reduction reaction 

11 FePC@ZIF-8 FeSA/N-doped carbon Oxygen reduction reaction 

12 Bimetallic Zn/Co ZIF Co/N-doped carbon 
Oxygen reduction and 

evolution reactions 

13 ZIF-8@PZS Fe/SA-doped hollow carbon Oxygen reduction reaction 

14 ZIF-8 NPC Supercapacitor 

15 Bimetallic Zn/Co-ZIF Co/Zn-ZIF-derived NPC Supercapacitor 

16 ZIF-8 NPC Supercapacitor 

17 ZIF-67@ZIF-8 N-CNT Oxygen reduction reaction 

18 ZIF-8/PAN 
Hollow particle-based N-doped carbon 

nanofiber 
Supercapacitor 

19 ZIF-8 NPC Supercapacitor 

20 Bimetallic Zn/Co-ZIF@SiO2 Co-N-doped carbon nanoframework Oxygen reduction reaction 

21 ZIF-67@AF Hierarchical ZIF-67@PR composite carbon Oxygen reduction reaction 

22 Bimetallic Zn/Co-ZIF Co-SAs/N-doped carbon Oxygen reduction reaction 

23 Bimetallic Zn/Co-ZIF Co-Nx-doped carbon CO2 reduction reaction 

24 ZIF-8 Cu-SAs/N-doped carbon Oxygen reduction reaction 

25 Bimetallic Zn/Co-ZIF Fe/Co/N-doped carbon Oxygen reduction reaction 

26 ZIF-67 N-doped carbon nanotube framework 
Oxygen reduction and 

evolution reactions 

27 PS@ZIF-67 Co/N-doped carbon Oxygen reduction reaction 

28 ZIF-67 Co/P-doped carbon 
Lithium ion battery and 

hydrogen evolution reaction 

29 Co-ZIF-8@F127 Co/N-carbon@F127 Oxygen reduction reaction 

30 ZIF Hollow mesoporous carbon nanocube Li-SeS2 battery 
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