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Fabrication of symmetric supercapacitor cell

1. To prepare electrode dispersion, add 10.0 mg of active material, 1.25 mg of carbon black (CB), 1.25 mg of
poly(vinylidine difluoride) (PVDF), and then 1 mL of 1-methylpyrrolidinone into a 4-mL glass vial. The ratio of
NPC:CB:PVDF in the electrode dispersion is set at 8:1:1 (Fig. 1).

2. Tightly close the 4-mL glass vial with its cap and sonicate the mixture for 1 hour without stirring.

A CRITICAL Adsorbed active materials on the wall of the glass vial can lead to variation in the concentration of
active material in the electrode dispersion, and eventually decrease in specific capacitance.

3. After sonication, carefully drop-cast first 100 pL of electrode dispersion onto the top side of two different current
collectors, and dry them in a vacuum oven at 60 °C.

6. After drying, carefully drop-cast the second 100 pL of electrode dispersion onto the top side of the two different
current collectors and dry them again in the vacuum oven at 60 °C for 3 h.

A CRITICAL The weight loading of active material is 2 mg per electrode.

A CRITICAL Homogeneous deposition of active material on the current collector must be ensured.

7. Unscrew and open HS test cell and carefully place one current collector with deposited electrode facing the top.
8. Wet glass microfiber filter paper cut into a circle with a diameter of 1.5 cm in 1 M H,SO,, and carefully place it on
top of the electrode side of the current collector in the HS test cell.

9. Carefully place the other current collector with deposited electrode facing the glass microfiber filter paper in the
HS test cell.

10. Carefully close the HS test cell and screw the pins to firmly fix the cell.

Equations for the capacitance of two-electrode symmetric supercapacitor cell
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where ‘C;’ is gravimetric capacitance (F g?), ‘' is current (A), ‘t’ is discharge time (s), ‘M’ is the total mass of active

materials on both electrodes (g), ‘V’ is the potential window (V).
Cy=Cgxp

where ‘G’ is volumetric capacitance (F cm?), and ‘p’ is the density of active material (g cm?).



Type of MOF-derived NPC

NC@GC NC@GC
Parameters NPC-700 NPC-800 NPC-900 NPC-1000 HNPC HPC-2.5  HPC-5.0

(0.05) (0.35)

Surface Area

1032 1678 1823 1591 788 1276 813 412 563
(m?g?)
Pore volume
0.80 0.97 1.40 0.89 1.41 1.78 0.89 0.52 0.71
(cm®g?)
Nitrogen
14.2 13.6 11.9 3.5 2.7 10.6 8.5 7.8 7.7
content (at. %)
Specific
16 165 217 153 113 270 149 159 271

capacitance
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Precursor

ZIF-8@ZIF-67
SOM ZIF-67
ZIF-8
ZIF-8@ZIF-67
Fe-doped ZIF
ZIF-8/PAN
Fe-doped ZIF-8
ZIF-8/PS
Zn-ZIF-L
TPI@ZIF-8(SI02)
FePC@ZIF-8
Bimetallic Zn/Co ZIF
ZIF-8@PZS
ZIF-8
Bimetallic Zn/Co-ZIF
ZIF-8
ZIF-67 @ZIF-8
ZIF-8/PAN
ZIF-8
Bimetallic Zn/Co-ZIF@SiO3
ZIF-67 @AF
Bimetallic Zn/Co-ZIF
Bimetallic Zn/Co-ZIF
ZIF-8
Bimetallic Zn/Co-ZIF
ZIF-67
PS@ZIF-67
ZIF-67
Co-ZIF-8@F127

ZIF

Carbon
CoP nanoparticle embedded N-doped carbon
nanotube hollow polyhedron

3DOM CoSe:@C
Ni SAs/N-C
ZnCo204@N-doped carbon/carbon nanotube
Fe/N-doped carbon
N-doped carbon
Fe/N-doped carbon
M-PNC
NGM
Fe/N-doped carbon
FeSA/N-doped carbon
Co/N-doped carbon
Fe/SA-doped hollow carbon
NPC
Co/Zn-ZIF-derived NPC
NPC

N-CNT

Hollow particle-based N-doped carbon
nanofiber

NPC
Co-N-doped carbon nanoframework
Hierarchical ZIF-67 @PR composite carbon
Co-SAs/N-doped carbon
Co-Nx-doped carbon
Cu-SAs/N-doped carbon
Fe/Co/N-doped carbon
N-doped carbon nanotube framework
Co/N-doped carbon
Co/P-doped carbon
Co/N-carbon@F127

Hollow mesoporous carbon nanocube

Application

Hydrogen evolution reaction
Aluminium ion battery
COz reduction reaction

Oxygen reduction reaction
Oxygen reduction reaction
Capacitive deionization
CO2 reduction reaction
Oxygen reduction reaction
Oxygen reduction reaction
Oxygen reduction reaction

Oxygen reduction reaction

Oxygen reduction and
evolution reactions

Oxygen reduction reaction
Supercapacitor
Supercapacitor
Supercapacitor

Oxygen reduction reaction
Supercapacitor
Supercapacitor

Oxygen reduction reaction

Oxygen reduction reaction

Oxygen reduction reaction

CO2 reduction reaction

Oxygen reduction reaction

Oxygen reduction reaction

Oxygen reduction and
evolution reactions

Oxygen reduction reaction

Lithium ion battery and
hydrogen evolution reaction

Oxygen reduction reaction

Li-SeS: battery
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