nature porthI iO https://doi.org/10.1038/s41596-022-00688-5

Supplementary information

Design and simulation of DNA, RNA and
hybrid protein—nucleic acid nanostructures
with oxView

In the format provided by the
authors and unedited

Supplemental Information for “Design and simulation of DNA, RNA, and hybrid
protein-nucleic acid nanostructures with OxView”

Joakim Bohlin,! Michael Matthies,? Erik Poppleton,? Jonah Procyk,2 Aatmik Mallya,? Hao Yan,? and Petr Sulc® *

! Clarendon Laboratory, Department of Physics, University of Ozford, Parks Road, Ozford OX1 8PU, UK.
2 Center for Molecular Design and Biomimetics at the Biodesign Institute and School of Molecular Sciences,
Arizona State University, Tempe, Arizona 85287, United States

SI. OXVIEW FILE FORMAT

Oxview has a JSON-based file format to save and load designs. An .oxview file is structured in a simple hierarchy,
with a main object containing a “systems” list together with possible metadata such as simulation box size.

An online description of the file format is available at https://github.com/sulcgroup/oxdna-viewer/blob/
master/file-format.md

{

"box": [100, 100, 100],
3 "systems": []
1

(S

Listing S1. The outer layer of the oxView JSON hierarchy

Positions are noted in oxDNA units, where 1 distance unit equals 0.8518 nanometers.

System

Each system needs to contain a unique system index “id” and a list of strands.

(S

"id": 0,
"strands": []

Listing S2. The system layer of the oxView JSON hierarchy

Strand

The attributes of each strand should be: “id” - a unique strand index, “end3” - the monomer index of the 3’
end of the strand, “end5” - the monomer index of the 5’ end of the strand, “class” - the strand type (currently
“NucleicAcidStrand” and “Peptide” are supported), and “monomers” - a list of monomers.

Circular strands should still have “end3” and “end5” specified, as this will indicate where to start traversal. Just
make sure that the monomer with id “end3” has an “n3” of “end5” and the “end5” monomer has an “n5” of “end3”.

- q{

2 "id": 0,

3 "end3": O,

| "end5": 63,

5 "class": "NucleicAcidStrand",
6 "monomers": []

Listing S3. The strand layer of the oxView JSON hierarchy

* psulc@Qasu.edu

https://github.com/sulcgroup/oxdna-viewer/blob/master/file-format.md
https://github.com/sulcgroup/oxdna-viewer/blob/master/file-format.md
mailto:psulc@asu.edu

Monomer

The attributes of each monomer should be: “id” - a unique monomer index, “type” - the monomer type (e.g. A,
T, C, or G if DNA), “class” - the monomer type (currently “DNA”, “RNA” and “AA” (amino acid) are supported),
“p”: center of mass position (in 0oxDNA coordinates), “al”: backbone vector, and “a3”: stacking vector.

Monomers can also include “n5” - the monomer index of the 5’ neighbor, “n3” - the monomer index of the 3’
neighbor, “bp” - the monomer index of the paired nucleotide (for DNA and RNA), “cluster” - index of cluster group
that the monomer belongs to, and “color” a base 10 representation of a hexadecimal color (used to set custom

coloring).

{
"id": 0, "type": "C", "class": "DNA",
||pll: [O’O’O],
"al": [0.8271594,0.5538015,0.0954520],
"a3": [0,0,1],
"n3": 63, "nb": 1, "bp": 95,
"cluster": 1, "color": 3633362

}

Listing S4. The monomer layer of the oxView JSON hierarchy

Complete example

Listing S5 shows an example of a complete oxview file, describing two base pairs of a DNA helix.

"date": "2021-08-23T08:38:04.5532",
"box": [10, 10, 101,
"systems": [{
"id": 0,
"strands": [
{
nign. O,
"monomers": [
{
TAQATg B,
"type": "A",
"class": "DNA",

"p": [-0.3518234193325043, -0.48602294921875, -0.19488525390625],
"al": [0.586372371762991, 0.810089111328125, 0],
"a3": [0, O, -11,

"n3": 0,
"cluster": 1,
"color": 16777215,
"bP": 3
Fo
{
"id": 0,
l|type||: IIA|| ,
"class": "DNA",
"p": [0, -0.5999755859375, 0.19488525390625],
"ai": [0, 1, O],
"a3": [0, O, -1],
"nb": 2,
"cluster": 2,
||bpll: 1
}
1,
"end3": O,
"endb5": 2,
"class": "NucleicAcidStrand"
Io
{
"id": 1,
"monomers": [
{

iy Al

N

"type": "T",

"class": "DNA",

"p": [0, 0.5999755859375, 0.19488525390625],
"ai": [0, -1, O],

"a3": [0, O, 1],

"p3". 3’
"cluster": 2,
"color": 16777215,
||bPII: O
Fo
{
"id": 3,
||type||: IIT||’
"class": "DNA",
"p": [0.3518234193325043, 0.48602294921875, -0.19488525390625],
"ai": [-0.586372371762991, -0.810089111328125, 0],
"a3": [0, O, 1],
"pE" . 1’
"cluster": 1,
"color": 16711680,
"hpt: 2
}
1,
"end3": 3,
"endb5": 1,
"class": "NucleicAcidStrand"

Listing S5. Example of complete oxview file

SII. OXDNA FILE FORMAT

A structure in oxDNA is defined by two plaintext files. When loading these files into oxView, the trajectory and
topology must be selected and opened together (whether via drag-and-drop or via the open dialogue). The first is
the ’topology file’ (file extension .top). The topology will have a one-line header followed by one line per particle.
The header has either two (for DNA or RNA alone) or four (for simulations including an ANM) space-separated
values. These are the number of nucleotides and the number of strands or the total number of particles, the total
number of strands, the number of nucleotides, the number of amino acids, and the number of DNA/RNA strands,
respectively. On each subsequent line is a space-separated list of particle parameter: the strand ID (positive integers
for DNA/RNA, negative integers for proteins), the particle identity, which can either be the standard 1-letter code
or an integer (integers which sum to 3 are allowed to base pair in the DNA/RNA models). The next two are the
particle ids of the 3’ and 5’ neighbors or —1 in the case of a strand end (note that this is inverse from the standard
DNA/RNA convention) or the N and C neighbors (which is the standard protein convention). For amino acids, there
are then the ids of any number of other amino acid acids which they are bonded to in the ANM model.

for example, the first three lines of the linact.top file generated in Procedure 1 looks like:

23420 362
1T -11

;1. G 0 2

Listing S6. The first three lines of an oxDNA topology file showing the header a strand end and a nuclotide inside a strand.

The second file is the ’configuration file’ (file extension .dat, .conf or .oxdna). The configuration has a 3-line header
containing the current timestep of the simulation, the simulation box dimensions, and the potential, kinetic and total
energy of the simulation at the current step. The header is then followed by one line per nucleotide where each line has
15 space-separated values containing the center of mass position, the hydrogen-bonding face orientation, the stacking
face orientation, the translational velocity and the rotational velocity. A ’trajectory file’ is simply many configurations
appended together, each one starting again with the three-line header.

For example, the first five lines of the linact.dat file generated in Procedure 1 with the precision reduced to 5
decimals looks like:

1t =0
> b = 479 479 479
3 E=000
1 6.42161 6.33274 20.87749 0.58441 -0.81145 0 0 0 -1 0 O O O O O
5 6.75381 6.44559 20.48773 0.03074 -0.99952 0 0 0 -1 0 O O O O O
Listing S7. The first five lines of an oxDNA configuration file showing the header and two nucleotide positions/orientations.

SIII. SCRIPTING FOR NANOSTRUCTURE DESIGN

The following text is intended as a cookbook, demonstrating common examples of the oxView scripring API. Please
refer to the source code and manual page on https://github.com/sulcgroup/oxdna-viewer for more details. Basic
knowledge of the JavaScript programming language is helpful.

As described in the main text, in addition to the options available in the graphical interface, oxView is scriptable
using the browser developer console. To enter a JavaScript program that edits the structure, follow this procedure:

1. Load a structure that you want to edit into OxView

2. Open a JavaScript console. On Chrome it is accessible through pressing CTRL + SHIFT + J on Windows
or Linux, and by pressing Command+ Option + J on Mac OS. On Firefox, press CTRL + SHIFT + 1.

3. Paste the script into the opened console and press enter.

OxView’s object hierarchy follows the structure of an oxDNA simulation file. Each loaded file is assigned to
be a new System object. Each System is composed of Strand objects stored in the strands property. These
are abstractions of nucleic acid strands (NucleicAcidStrand) and peptides(Peptide), which are containers for
Nucleotide and AminoAcid elements which will be called BasicElement from here forth and are returned as an
Array uppon the getMonomers() strand method. There are three ways one can interact with a loaded object in
oxView using the developers console to get to the BasicElement’s:

1. selectedBases - A JS set object, which contains the currently selected elements.
2. systems - A list of currently loaded systems.

3. api.getElements - A function which returns elements with the provided ids.

A. selectedBases

All BasicElement objects which are currently selected on the scene are stored in the selectedBases Set. To
access individual elements it is easiest to convert the Set object to an array:

I let selected = Array.from(selectedBases);
selected[0] // first selected element

N

Listing S8. Access the first selected element.

B. systems - variable

Each instance of oxView contains a list of System objects. These can be accessed through the systems variable.
As described before, the getMonomers() method returns an Array of the BasicElement’s comprising a given
strand.

1 let monomers = systems [0].strands [0].getMonomers () ;
> monomers [0]; // the first BasicElement of the first strand.

Listing S9. Accessing the first BasicElement of the first strand of the first system.

C. api.getElements

The most common way to refer to elements when setting up oxDNA simulations is by their absolute index in the
oxDNA topology file. oxView provides this functionality by using the api.getElements - Function call.

1 let first = api.getElements ([0]);
Listing S10. Accessing the first BasicElement as referenced in the topology file.

D. Examples

Building on this knowledge let us walk through a couple of practical examples.

1. Coloring a list of particles

A typical problem when visualizing nucleic acid nanostructures is identifying problematic strands. If a staple strand
is too short it may not bind stably to the structure and a too long strand is hard to synthesize. The following code
entered in the developer console creates a color scheme where the strands with a length below 18 nucleotides are
colored red, 18-50 nucleotides are considered optimal staple length and are colored green, 50-500 nucleotides are
considered to long staples and colored orange. Strands above 500 nucleotides are considered as scaffold stands and

colored blue.

// first we define the different strand length categories
let minStaplelLength = 18;
let maxStapleLength = 50;
let minScaffoldLength = 500;

// a color scheme for

the respective strands

¢ let colors = {
7 "small" new THREE.Color(’red’),

8 "optimal" new THREE.Color(’green’),
9 "long" : new THREE.Color(’orange’),
"scaffold": new THREE.Color (’blue’)

};

1

// we assume we have only 1 design loaded
systems [0] . strands.forEach(strand=> {

// get the monomers of the current strand
= strand.getMonomers () ;
// and the strand length
strand.getLength () ;

let monome

let length

rs

// Assign the strand to a key in the color scheme
= "scaffold";
if (length < minStapleLength)

let select

selector

or

"small";

if (length >= minStaplelength && length <= maxStapleLength)

selector

"optimal";

if (length > maxStaplelLength && length <= minScaffoldLength)

selector

ulongn;

// color the strand
colorElements (colors[selector], monomers);

3

render () ;

Building on the previous example, one might be interested in obtaining the sequence of selected strands for a given

Listing S11. Coloring strands by length (JS code)

2. Printing the sequence of selected stands

design. The result of this script is sequentially printed onto the developer console.

let strandSet

= new Set();

// Set objects store only 1 instance of every element provided

>

selectedBases.forEach(nucleotide => strandSet.add(nucleotide.strand)); // figure out the strands
iterating through all selectedBases
strandSet.forEach(strand => console.log(strand.getSequence())); // print the strand sequences

Listing S12. Get sequence of selected strands (JS code)

8. Visualizing the center of mass for a provided trajectory

Another common problem during trajectory visualisation is to highlight some structural properties. oxView provides
a special API, which allows to bind the computation/visualisation of sertain parameters to one of the oxView update
functions. Examples of update functions are render, trajReader.nextConfig or trajReader.previousConfig.
Any function can be bound using the api.observable.wrap call as shown in Listing 6. To get one started oxView
provides a couple of useful example classes. The api.observable.CMS class provides an easy way to visualize the
center of mass of provided set of particles. And the api.observable.Track creates a trail following the particle
provided position. The following code visualizes the track of the center of mass of a selected system.

let cms = new api.observable.CMS(selectedBases, 1, 0xFF0000) ;
let track = new api.observable.Track(cms) ;
const updateFunc = ()=>{
cms.calculate () ;
track.calculate();
};
render = api.observable.wrap(render, updateFunc);
render () ;

Listing S13. Creating an order parameter (JS code)

4. Constructing a crystal cluster from a provided origami design

Here we provide the full JavaScript source code for the example in Figure 4 in the main text. The code below
creates a cubic lattice composed of 3D DNA wireframe structures. It copies and pastes the individual origamis to
create the lattice geometry and then connects the neighboring origamis via their single-stranded overhangs.

// adjust box
box.set (500,500,500) ;
// function translating a base index to a connection call
function connect (f, t){
//receive first strand
let s1 = elements.get(f).strand;
//receive second strand
let s2 = elements.get(t).strand;
//connect the 2 strands by a duplex patch
edit.interconnectDuplex3p(sl,s2);

}
//grid id to index storage
let d = {};

// we assume that the first system is the one we want to copy around

systems [0].select ();

// we store the number of bases comprising the system to calculate the offset of the patch
positions

const n_elements = selectedBases.size;

// compute the center of mass of the octahedron origami

let cms = new THREE.Vector3(0,0,0);

selectedBases.forEach(base =>{
cms . add (base.getPos());

B

cms.divideScalar (selectedBases.size);

// prepare to copy around

cutWrapper () ;

// index of the currently generated origami
let idx = O0;

// we construct a grid of 3x3x3

for(let k=0;k < 3; k++){

31 for(let j = 0; j < 3; j++){
32 for(let i=0; i < 3; i++){
33 //build up the index of the origami in the grid to use for offset

34 dl${i},${j},8{k} 1= idx++;

35 //print progress

36 console.log(i,j,k)

37 //paste in a new structure, true keeps the position
38 pasteWrapper (true) ;

39 //make sure everything is its own cluster

40 selectionToCluster ();

41 //copy our computed cms value

42 let cms_c = new THREE.Vector3().copy(cms);

43 //compute the offset position

14 cms_c.set(cms.x +80%i,cms.y+80%j,cms.z+80%k) ;
15 //move the origami

46 translateElements (selectedBases, cms_c);

47 }

18 X

a9 }

50 // lets build up the connections in the grid
1 for(let k=0;k < 3; k++){
52 for(let j = 0; j < 3; j++){

53 for(let i=0; i < 3; i++){

54 // retrieve the index of the origami we are connecting
55 const self_idx = d[‘${i},${j},${k}];

56 // an origami in a cubic lattice has 3 neighbors

57 // so we get their indexes

58 const right = d[“${i+1},${jr,${k>‘1;

59 const top = d[“${i},${j+1},8{k}]1;

60 const north = d[“${i},${j},8{k+1}1;

61 // print progress

62 console.log(self_idx, right,top, north);

63 // compute offset for the origami we are working on

64 const s = self_idx*n_elements;

65 if (right){ // if we have a right neighbor

66 // compute the offset for it

67 const r = right*n_elements;

68 // connect all 4 patches to the current origami in the grid
// indices are derived from the initial origami design, we want to copy around
connect (s+12420, r+8414);

connect (s+9994 , r+11794);

connect (s+7318 , r+11168) ;

connect (s+7254 , r+9446) ;

N I

}
if (top){ // if we have a top neighbor
// compute the offset for it
const t = top*n_elements;
// connect all 4 patches to the current origami in the grid
// indices are derived from the initial origami design, we want to copy around

® N o U

s T = IS TR TS T SRR TS |

80 connect (s+7866 , t+6692) ;

81 connect (s+11858, t+6144);

82 connect (s+11232, t+10058) ;

83 connect (s+12968, t+10606) ;

84 }

85 if (north){ // if we have a north neighbor

86 // compute the offset for it

87 const n = north*n_elements;

88 // connect all 4 patches to the current origami in the grid

89 // indices are derived from the initial origami design, we want to copy around

90 connect (s+8898 , n+6628);
91 connect (s+10542, n+9510) ;
92 connect (s+8350 , n+8962);
93 connect (s+7802 , n+12904) ;

Listing S14. Creating a 3x3 primitive cubic lattice from a single DNA origami (JS code)

N

(SN

SIV. SETTING UP ANM-OXDNA SIMULATIONS
A. Compiling ANM-oxDNA

ANM-0xDNA is an extension of oxDNA developed in C++ with CUDA acceleration. As such it requires a C+-+
compiler and CUDA installation. The recommended compiler for this project is gcc version 4-6. Due to some C++11
features being used in the older code, the allowed gcc version is very specific. Supported CUDA installations must
be version 5-9. Once these prerequisites are satisfied you can compile the code by following the example procedure
below:

git clone https://github.com/sulcgroup/anm-oxdna
cd oxdna
mkdir build

cd build
cmake .. #0ptional argument -DCUDA=1 for CUDA support
make -j6 #The integer after j is the number of threads to use to compile

Listing S15. Downloading and compiling the anm-oxDNA model (Shell)

B. Protein Parameterization with Python Scripts

Direct parameterization of a protein into our anm-oxDNA model requires solving for the pseudo-Inverse of the
Hessian matrix to calculate the root mean squared fluctuations of each residue in the protein. Due to the amount of
memory required and complexity of the calculation, oxView can only support parameterization of proteins consisting
of less than 1000 residues. For larger proteins, python scripts are provided at https://github.com/sulcgroup/
anm-oxdna in the /ANMUtils directory to perform the parameterization of the ANM and convert the system into
oxDNA /oxView compatible files.

Below is an example script to demonstrate the Python module’s intended usage:

First we import the python module named ’models.py’
Make sure you are in the correct directory!

import models as m
pdbfile = ’~/Desktop/tmp/myprotein.pdb’

The first function call should always be to read in information
from the PDB file via the function get_pdb_info ()

experimental _bfactors, xyz_coordinates = get_pdb_info (pdbfile)
The optional parameter returntype in get_pdb_info can be altered to return information

including sequence, chain ids, rigid body side chain vectors and other pdb information
See the examples in the anm-oxDNA /ANMUtils directory for detailed usage

7 # Now we initialize a model using just the coordinates and B factors

our_anm = m.ANM(xyz_coordinates, experimental_bfactors, T=300, cutoff=13)
T is temp in Kelvin at which the protein B factors were determined

Cutoff is the Edge Cutoff value, once again in Angstroms

As a guideline, i usually start with 12-13 A and will go up

as high as 18A

!Cutoff values must be set upon initialization, however creating

several models at different cutoff values and comparing is easy!

The ANM class serves as a base for the other classes
which all others (except peptide) inherit from

In all classes (except peptide) there is a one-shot function that
automatically evaluates the analytical B-factors for that model.

#For our example ANM

https://github.com/sulcgroup/anm-oxdna
https://github.com/sulcgroup/anm-oxdna

37 our_anm.calc_ANM_unitary ()

39
10

41

H OH

12
43
14 #

45

The above function does the following:

1) Evaluates B-factors via SVD of Hessian

2) Automatically fits the spring constant to best fit with Experimental B-factors
3) Optional ’cuda’ parameter is recommended for large structures (See /ANMUtils)

Using Matplotlib we can plot our calculated B factors vs. the Experimental B factors

46 our_anm.anm_compare_bfactors(bfactor_comparison_image)

17

a8 #
19

50 #
51 #
52 #
53

54 #
55 #
56 #
57 #
58

50 m
60

61 #

saves figure of compared B factors to filepath bfactor_comparison_image

Alternatively, for a more interactive experience Jupyter Notebook can also be used
See /ANMUtils Setup example for more information on setting up a kernel
and further usage in Jupyter notebook

Assuming the B factors match close enough for your system of interest

We now export our solved network into our oxDNA/oxView simulation files

For all models, this consists of a single function call that uses the model itself
as its main argument

.export_to_simulation(our_anm, pdbfile)

Generates Topology, Configuration, and Parameter File for system

Listing S16. Setting up a protein ANM model using Python (Python code)

SV. TRAJECTORY ANALYSIS WITH PYTHON

OxDNA trajectory files are plaintext files that, for an origami-sized structure, are often on the order of 10 GB in

size. As such, it is important to have optimized algorithms and data structures that facilitate asking questions of your
data set. Here, we introduce writing custom scripts using the tools provided in oxDNA Analysis Tools as a scaffold
which makes working with these files as easy as possible.

In general, all scripts in oxDNA Analysis Tools follow the same general scaffold:

1. Define functions which compute the properties of interest for a single configuration. This can be pure Python
or it can call outside programs such as DNAnalysis.

2. if __name__ == "__main__":

3. Parse command line arguments. We use the argparse library for this, however this is a stylistic choice that has
no impact on the rest of the code. In general the following conventions are used for flags in the package:
-h — Display the help and available command line arguments
-p — Parallelize the computation oover the provided number of cpu cores
-0 — Primary output file name (if not from the required arguments)

-d — Data file output name. In the package these data files are in the json format for oxView order parameter
visualization.

-v — Visualization file output name
-i — Index file which tells the script to only run on a subset of the structure
-¢ — Call the clustering algorithm when the computation is complete

There are, of course, exceptions and additional flags for specific scripts, but these are general conventions that
we try to follow when developing scripts.

4. Create a file reader object. There are two file readers available in the library:

LorenzoReader2 — Takes a trajectory and a topology file and recreates a similar object to the internal oxDNA representation.

This is based on the data structures found in base.py from the main oxDNA distribution.

10

ErikReader — Takes only a trajectory file and creates an object with Numpy arrays for positions and the two orientation
vectors. This is much faster than the LorenzoReader, however can only be used for applications where the
identity of the parent strand of an individual nucleotide is unnecessary.

5. Call the previously-defined analysis function using the reader as an argument. This can be done using one of
the parallelization functions which are available as part of the library. There are two different methods available
for splitting the trajectory file:

One file — Attach multiple Python file readers to the trajectory file. On some systems, this can result in a significant
slowdown of the analysis, which is why the second option is available.

Multi-file — Split the trajectory file into multiple temporary files and attach a single reader to each temporary file. This
requires additional disk space and can leave junk files if the script fails before the cleanup step.

6. If a parallelization scheme was used, parse the data from each process and merge the data structures into the
same format as if it came from a single process

7. Perform any post-processing steps on the full trajectory worth of data

8. Create plots, output files, and data summaries. We use Matplotlib for generating plots and generally use JSON
encoding for our output files which often interface with one of the data overlay options in oxView. Many of the
plots created by the library as relatively simple and we highly encourage users to edit the plotting function to
match their own stylistic and visualization needs.

When writing your own analysis scripts, we highly recommend referencing the scripts in the package, particularly
compute_mean.py and duplex_angle _finder.py as examples of using the ErikReader and LorenzoReader2, respectively.

As a shorter example than the aforementioned scripts, listing S17 is a simple script which calculates the dot products
of the al orientation vectors for bonded nucleotides which was used in parameterizing oxView’s base pair finder:

1 # import the libraries needed for this computation

I added a symlink to oxdna_analysis_tools in a directory on my Python installation’s PATH so I
could import it like this.

3 # You could also write this script inside the oxdna_analysis_tools directory or add the path to

your PYTHONPATH system variable to make the functions available for import.

i import numpy as np

5 from oxdna_analysis_tools.UTILS.readers import LorenzoReader2

6 from oxdna_analysis_tools import output_bonds

N

8 # Define a function that calculates my quantity of interest.

o # In this example, its the dot products of the al orientation vectors.

10 def get_orientation(mysystem, inp):

11 # This function uses DNAnalysis to calculate the interaction energies between the particles in
the system.

12 energies = output_bonds.output_bonds(inp, mysystem)

14 # These methods of the system object assigns each nucleotide to a strand and provides a
reference to its paired nucleotide if one exists.

15 mysystem.map_nucleotides_to_strands ()

16 mysystem.read_H_bonds_output_bonds (energies)

18 # Create a list of al vectors of interacting nucleotides
19 vis = []
20 v2s = []

21 for s in mysystem._strands:

22 for n in s._nucleotides:

23 if len(n.interactions) == 1:

24 vis.append(n._al)

25 v2s.append (mysystem._nucleotides[n.interactions [0]]._al)

27 # Convert the list of al vectors to a Numpy array, which allows for faster computation.
28 vls = np.array(vls)
29 v2s = np.array(v2s)

31 # Einstein summation is a compact matrix math representation which is faster than using for
loops or broadcasting, both of which would also work here.

32 dots = np.einsum(’ij,ij->i’, vis, v2s)

34 return dots

if

__name__ ==

11

" __main__":

Use Argparse to retrieve command line arguments

import argparse

parser = argparse.ArgumentParser (description="Calculates the dot product between al vectors of

bonded nucleotides")

parser.add_argument (’trajectory’, type=str, nargs=1, help="The trajectory file to analyze")
parser.add_argument (’topology’, type=str, nargs=1, help="The topology file corresponding to the
trajectory")

parser.add_argument (’input’, type=str, nargs=1, help="the input file used to run the simulation
II)

args = parser.parse_args ()
top_file = args.topologyl[0]
traj_file = args.trajectory[0]
inp = args.input [0]

Create a reader object

myreader = LorenzoReader2(traj_file,top_file)

mysystem = myreader._get_system()

all_orientations = []

This was a simple program not intended for re-use so it was not parallelized. Please see

compute_mean.py for a good example of how to set up parallelization.
Iterate through the trajectory and compute the quantity of interest for each configuration.
while mysystem:

print (mysystem._time)

all_orientations.extend(get_orientation(mysystem, inp))

mysystem = myreader._get_system()

The goal of this exercise was to find out how far from directly antiparallel the vectors
could be for oxDNA to still consider them paired
print (max(all_orientations))

Create a simple plot to visualize the result
import matplotlib.pyplot as plt
bins = np.linspace(-1, max(all_orientations), 60)

plt.hist(all_orientations, bins)
plt.ylabel (’count’)
plt.xlabel(’dot product’)
plt.show ()

Listing S17. An example of extending oxDNA Analysis Tools to compute an order parameter (angle between bonded
nucleotides). (Python code)

You could then call this from a command line with:
Python3 orientations.py trajectory.dat topology.top

This will work with any set of trajectory/topology/input file you may have.

	Design and simulation of DNA, RNA and hybrid protein–nobreaknucleic acid nanostructures with oxView
	SpringerNature_NatProtocol_688_ESM.pdf
	Supplemental Information for ``Design and simulation of DNA, RNA, and hybrid protein-nucleic acid nanostructures with OxView''
	OxView file format
	System
	Strand
	Monomer
	Complete example

	oxDNA file format
	Scripting for nanostructure design
	selectedBases
	systems - variable
	api.getElements
	Examples
	Coloring a list of particles
	Printing the sequence of selected stands
	Visualizing the center of mass for a provided trajectory
	Constructing a crystal cluster from a provided origami design

	Setting up ANM-oxDNA simulations
	Compiling ANM-oxDNA
	Protein Parameterization with Python Scripts

	Trajectory analysis with Python

