Supplementary information

Quantum defects as versatile anchors for carbon nanotube functionalization

In the format provided by the authors and unedited

Supplementary Data

Quantum defects as versatile anchors for carbon nanotube functionalization

Florian A. Mann^{1,2}, Phillip Galonska¹, N. Herrmann² and S. Kruss^{1,2,3,*}

¹ Physical Chemistry II, Ruhr-Universität Bochum, Germany.

² Institute of Physical Chemistry, Göttingen University, Germany.

³ Fraunhofer Institute for Microelectronic Circuits and Systems, Germany.

*e-mail: sebastian.kruss@rub.de

NMR spectra were measured on a Bruker Avance III HD 300 with a 5 mm probe at room temperature, using standard glass NMR tubes. ¹H and ¹³C shifts are reported relative to (residual) solvent peaks. MestReNova 10 was used for analysis. ESI-TOF-MS spectra were acquired on a Bruker micrOTOF using direct injection. Small amounts of methanol were added to the acetonitrile solutions to enhance the ESI-MS signal.

4-(N-Maleimido)phenyldiazonium tetrafluoroborate

¹**H-NMR** (300 MHz, CD₃CN): δ (ppm) = 8.56 (m, 2 H, H_{2,6}), 8.09 to 8.15 (m, 2 H, H_{3,5}), 7.08 (s, 2 H, H_{maleimide}). ¹¹**B-NMR** (96 MHz, CD₃CN): δ (ppm) = -1.16 (s). ¹⁹**F-NMR** (282 MHz, CD₃CN): δ (ppm) = -151.48 (s), -151.54 (s) (two signals due to the two NMR-active boron isotopomers).

¹³**C-NMR** (75 MHz, CD₃CN): δ (ppm) = 169.4, 144.8, 136.5, 134.7, 127.4, 111.2.

HRMS (ESI (pos.) [*m*/*z*]): calculated (C₁₀H₆N₃O₂ [M⁺]): 200.0455, found: 200.0448; calculated (C₁₀H₆NO₂ [M-N₂]⁺): 172.0393, found: 172.0389; (C₁₁H₁₀NO₃ [M-N₂+MeOH]⁺): 204.0645, found: 204.0655.

The ¹H-NMR data is corresponding to the literature.^[1]

¹H-NMR

¹¹B-NMR

¹¹B NMR (96 MHz, CD₃CN) δ -1.16.

70 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -17 f1 (ppm)

----1.16

¹⁹F-NMR

¹⁹F NMR (282 MHz, CD₃CN) δ -151.54.

· ·																	· · ·					
0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210	-220
f1 (ppm)																						

Fmoc-L-4-diazonium-phenylalanine tetrafluoroborate

¹**H-NMR** (300 MHz, CD₃CN): δ(ppm) = 8.35 (d, J = 8.5 Hz, 2H), 7.84 (d, J = 7.5 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.61 (dd, J = 7.5, 4.6 Hz, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 6.13 (d, J = 8.7 Hz, 1H), 4.53 (s, 1H), 4.30 (d, J = 6.2 Hz, 2H), 4.18 (t, J = 6.8 Hz, 1H), 3.50 – 3.41 (m, 1H), 3.27 – 3.16 (m, 1H).

¹¹**B-NMR** (96 MHz, CD₃CN): δ(ppm) = -1.15(s).

¹⁹**F-NMR** (282 MHz, CD₃CN): δ (ppm) = -151.47 (s), -151.53 (s) (two signals due to the two NMR-active boron isotopomers).

A ¹³C-NMR was not obtained due to the low solubility of this compound in acetonitrile.

HRMS (ESI (pos.) [*m*/z]): calculated (C₂₄H₂₁NO₄[M-N₂]⁺): 386.1392, found: 386.1387.

¹H-NMR

¹¹B-NMR

"B NMR (96 MHz, CD,CN) 8 -1.15.

¹⁹F-NMR

[1] J. C. Harper, R. Polsky, D. R. Wheeler, S. M. Brozik, *Langmuir* **2008**, *24*, 2206–2211.