Supplementary information

3D bioprinted silk fibroin hydrogels for tissue engineering

In the format provided by the authors and unedited

SUPPLEMENTARY INFORMATION

3D bioprinted silk fibroin hydrogels for tissue engineering

Soon Hee Kim^{1,7}, Heesun Hong^{1,7}, Olatunji Ajiteru^{1,7}, Md. Tipu Sultan^{1,7}, Young Jin Lee¹, Ji

Seung Lee¹, Ok Joo Lee¹, Hanna Lee¹, Hae Sang Park^{1,2}, Kyu Young Choi^{1,3}, Joong Seob

Lee^{1,4}, Hyung Woo Ju⁵, In-Sun Hong⁶, Chan Hum Park^{1,2,*}

¹Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea. ²Departments of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, School of Medicine, Hallym University, Chuncheon 24252, Republic of Korea. ³Department of Otorhinolaryngology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea, ⁴Department of Otorhinolaryngology, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea, ⁵Nano-Bio Regenerative Technology Company Ltd. 56-16, Toegyegondan 1-gil, Chuncheon, Gangwon-do 24427, Republic of Korea, ⁶Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 406-840, Republic of Korea, ⁷These authors contributed equally to this work.

*email: hlpch@paran.com

Supplementary Figure 1. Silk fibroin (degummed silk) after dehydration. After measuring the weight of cut cocoons (40 g), the silk was degummed in 1 L of 0.05 M sodium carbonate (Na₂CO₃) for 1 h. The degummed silk was rinsed 2-3 times with DW followed by dehydration in the flow oven overnight. Scale bar: 5 cm