
Supplementary information

Ametabolicmodelingplatformfor the
computationofmicrobialecosystemsintime
andspace (COMETS)

In the format provided by the
authors and unedited

12
34

56
78

9
0
()
:,;

12
34
56
78
90
()
:,;

https://doi.org/10.1038/s41596-021-00593-3

Supplementary Discussion 1: Detailed information on the development

of the protocol

Flux Balance Analysis. Flux Balance Analysis (FBA) is a constraint-based computational method used to
predict the function or phenotype of an organism by simulating its metabolism. Although it has been
described extensively elsewhere1,2, we give here a brief overview of the basic principles of FBA.

The network of metabolic chemical reactions is represented by the stoichiometric matrix S. In this matrix,
rows represent metabolites and columns represent reactions; Sij represents the moles of metabolite i
consumed (Sij<0) or produced (Sij>0) by reaction j. FBA, like many other stoichiometry-based models of
metabolism, relies on the assumption that cellular metabolism is at steady state. This assumption should
be thought of as pertaining to a population of cells over a certain period of time, such that, on average,
the concentrations of metabolites inside cellular biomass do not change in time. This steady state
assumption imposes the following linear constraints on the fluxes through the metabolic reactions:

where ν is the vector of reaction fluxes, whose i-th component νi is the flux through reaction i (typically in
units of mmol/grDW*h). Additionally, a lower (lb) and upper (ub) bounds can be set to constrain each flux
between a minimal and a maximal value:

These bounds may be used to define a reaction as irreversible by setting:

In the case of “exchange reactions” (reactions representing the availability of nutrients from the
environment), we use these bounds as tuning knobs to define the maximal uptake rate of the
corresponding nutrients. The bulk of the metabolic fluxes are left virtually unbounded. Thus, in practice,
the main constraint to internal metabolic fluxes arises from the requirement of mass balance, defined by
the stoichiometric matrix and ultimately by the structure of the metabolic network, and by the boundary
conditions of nutrient availability and thermodynamic infeasibility. Note that, as described later, the
nutrient availability flux bounds will be dealt with in a substantially different way in dynamic FBA and in
COMETS.

The maximal uptake rate for the exchange reactions is typically modeled with the Michaelis-Menten
kinetics:

where is the nutrient concentration, Vmaxis the maximum rate and KM is the Michaelis
constant.

Mathematically, these constraints define a convex polytope, i.e. a volume of permitted fluxes in high
dimensional space, with the number of dimensions defined by the number of reactions, i.e. the number
of columns of the stoichiometric matrix S. Note that the reconstruction of a metabolic network from an
organism's genome (described in detail elsewhere3) involves substantially more complicated steps,
including a detailed mapping between genes and reactions. These steps are not described here, but are
an important component for the usage of FBA methods towards making accurate predictions.

https://paperpile.com/c/4oq2e3/dcoa+SXEW
https://paperpile.com/c/4oq2e3/ouYfw

To predict a specific set of fluxes for a given metabolic network, FBA requires an additional step, in
which the feasible space is searched for a point (or set of points) that maximizes (or minimizes) a given
objective function, represented in the form of a linear combination of the flux variables. Usually, this
objective function is the production of a set of molecules (building blocks, energy and redox currency)
that metabolism needs to provide in precise proportions as required by other cellular processes
(synthesis of macromolecules, membranes, DNA replication, transcription, etc.) to generate new
biomass4. The use of linear objective functions makes it possible to solve this mathematical problem
through well-established efficient linear programming algorithms, available through a number of
libraries. A typical FBA optimization for a genome-scale model, on a standard laptop computer, takes on
the order of a few milliseconds. Biologically, the search for a set of fluxes that optimizes a given
objective implies the hypothesis that an organism has evolved to be able to regulate its metabolic fluxes
to approach that optimum under a set of environmental conditions. In other words, the model assumes
an “optimal regulation”. This assumption is partly justified by evolution5,6, but it does not necessarily
hold in all conditions5,7–9. COMETS can accommodate arbitrary objective functions, in addition to
maximization of biomass production. Moreover, it supports multiple objectives optimized 5,10

iteratively5,10, including the minimization of the sum of the absolute values of fluxes (also known as
parsimonious FBA)9.

Dynamic Flux Balance Analysis (dFBA). Dynamic Flux Balance Analysis11 is an iterative extension of FBA
that explicitly includes the dynamics of the organisms as they grow, and the effects of this growth in the
environment. dFBA produces piecewise-linear approximations of the microbial growth curve (i.e.,
biomass as a function of time), and of the environmental abundance of metabolites, that can change
due to external factors, or through uptake/secretion fluxes. Notably, in dFBA, while extracellular
metabolites can dynamically change, intracellular ones are still assumed to be at steady state (through
fast equilibration). In COMETS, for each microbial species , we implement dFBA by numerically solving
its biomass equation:

where Bα is the biomass of species α and να

growth is the growth rate, as computed through FBA. Effectively,
upon fixing a finite Δt, a change of biomass for each species in the next time step is computed as ΔBα=να

growth
Bα Δt. The dynamics of each external metabolite is governed by the equation:

where Qi is the abundance of external metabolite i and να

i is the exchange flux of metabolite i in species α.
Similar to the biomass equation, the changes in extracellular metabolites are computed based on FBA-
inferred fluxes and the finite time interval.

At the beginning of the simulation, the starting molecular composition of the environment is initialized,
based on initial conditions set by the user. At each iteration, the program estimates each model’s uptake
bounds based on the external concentration of nutrients, and solves each model’s FBA, obtaining an
estimate of the growth rate and all other fluxes, including uptake and secretion. Because models are
optimized sequentially, when a nutrient is limiting, if there are many models present in the simulated
layout, the total amount of a given nutrient scheduled to be uptaken in a single time iterationof a given
nutrient will likely may exceed the actual amount present in the system. This is due to the fact that the
calculation of the nutrient uptake rate in each model separately takes into account its total
concentration. If several models are present, several uptake rates will be calculated for the same
nutrient.its concentration in presence of multiple populations (models). To prevent this artifact,

https://paperpile.com/c/4oq2e3/tbIkV
https://paperpile.com/c/4oq2e3/Mkg13+cvdUS
https://paperpile.com/c/4oq2e3/qz8vj+bP1I6+Mkg13+Lug44
https://paperpile.com/c/4oq2e3/Mkg13+Yl1LM
https://paperpile.com/c/4oq2e3/Mkg13+Yl1LM
https://paperpile.com/c/4oq2e3/Lug44
https://paperpile.com/c/4oq2e3/1CN7G

COMETS checks at every iteration whether the total uptake, the sum of uptakes for a given nutrient
from all models, is higher than the total amount presentconcentration for anythe said nutrients. If this
happens, if there is no sufficient amount of a nutrient to be uptaken according to the total uptake rate,
COMETS performs a second optimization, this time adjusting the uptake of all models to be proportional
to the uptakes computed in the first optimization without exceeding nutrient concentration in the
environment. The resulting fluxes are used as inputs in the above equations to compute the changes in
biomass and extracellular metabolites. One of the important outcomes of this process is the fact that
different organisms may compete for common resources and/or exchange metabolites as an outcome
of their own objective function. Microbe-environment and microbe-microbe interactions are emergent
properties of the physiology of each species12.

As mentioned above, a key aspect of dFBA is that it requires a mapping between the external nutrient
concentration and the maximal uptake rate for each metabolite in each organism. COMETS includes
three possible choices for such mapping functions. Bounds can be either a linear function of the
concentration, a Monod (or Michaelis-Menten) function, or a pseudo-Monod uptake type (i.e., linear
until a given threshold, then constant). The type of uptake can be specified in the parameter
exchangeStyle. A special case of “nutrient” uptake is light absorption, which is calculated from
absorption coefficients using the Beer-Lambert law.

Metabolite control. All simulations begin with an initial metabolite environment, which may vary across
space. Metabolites can also be set to change in pre-defined ways during the simulation. A metabolite
can be assigned the static property, which causes it to begin each time step at the defined value.
Second, the refresh property can be used to add (or remove) a constant amount of metabolite to a
spatial location per-hour, divided equally among the time steps. Third, metabolite abundances can be
set to vary periodically using defined wave functions. Finally, all metabolites can be set to dilute
proportionally, using the parameter setting metaboliteDilutionRate.

Spatial structure and dynamics. The classical implementation of dFBA described above (which can be
implemented in COMETS) corresponds to a well-mixed system, in which all microbes and metabolites
are uniformly distributed and have access to each other in proportion to their concentration. In addition
to this dynamics in time, COMETS is able to take into account the spatial structure of microbial colonies
and communities, simulating arbitrary two-dimensional spatial structures (a 3D version is in principle
available, but has not been thoroughly tested yet). Spatial structure in COMETS is implemented as a 2D
grid of cubic “boxes” with a given dimension and volume. Inside each of these “boxes”, a well-mixed
scenario is assumed. The biomass of different species and the environmental metabolites can propagate
from a given box to neighboring boxes based on physics laws of convection-diffusion, as described in
detail below.

Biomass propagation. The core of the COMETS method is the simulation of the propagation of the
biomass present in the system. The simulations are performed by numerically solving the partial-
differential equations that govern the dynamics of the system 13–18. The dynamical variable of biomass
(formally biomass density) is spatially continuous. Although the natural unit of biomass is a single cell of
an organism, we implemented the biomass dynamics as one of a locally averaged continuous quantity.
The reason for this choice is to be able to simulate macroscopic systems on the order of centimeters and
larger. An individual cell-based methodology 19,20 would significantly hinder the extent ofin both size and
time of the simulations.

https://paperpile.com/c/4oq2e3/x8hoG
https://paperpile.com/c/4oq2e3/lfoMg+bH3vp+jDKfj+3Snng+aaBZQ+htKgZ
https://paperpile.com/c/4oq2e3/x87vS+SevHP

The partial differential equation for biomass propagation written in the general form is:

Here Bα=Bα(,t) is the biomass of species α at spatial position and at time t. The operator is the vector
differential operator, Dα=Dα(,t) is the diffusivity of species α, and it can vary in space and time explicitly,
or as a function of the local biomass. Qm=Qm(,t) is the local nutrient/metabolite content (density). α=
α(Bα; ,t) is the local velocity of the bulk biomass of the corresponding species. The biomass velocity can be
a function of the biomass (as a mechanistic model) or explicitly a function of the time and spatial position.
Finally, fα(Bα,Qm) is the biomass growth/death term. This term has the same form as the corresponding one
for dFBA.

The temporal dynamics of the biomass at a spatial point is governed by the three terms on the right-hand
side of the equation. The first term is a diffusive one, and it models the free movement of the individual
bacterial cells. The diffusivity may be an explicit function of time and/or spatial position. In this case the
local diffusivity depends on the external conditions, such as material in the region where the biomass is
propagating, etc. The diffusivity may also be a function of the biomass, modeling the cooperativity in the
propagation of the bacterial colony. The second term on the right-hand side of the equation is the
advective one and models the bulk motion of the biomass with a local velocity α u. The local velocity may
explicitly depend on the spatial point and time. This would be a model of biomass motion in external flow.
The biomass velocity however may be a function of the biomass itself given via a mechanistic model, such
as a model of propagation by mutual mechanical pushing of the cells. By combining these terms for
biomass propagation, we can model a wide range of modes of bacterial motility21. Setting the diffusivity
to a constant and the convective term to zero, we can model, for example, simple diffusive swimming and
twitching21. Having the diffusivity be a function of the biomass itself, we model the collective motion of
the bacteria. The advective term models the sliding of the colony due to mechanical pushing of the cells
during the colony expansion21.

In COMETS we have implemented the mechanistic model of biomass propagation by cellular pushing 14.
As individual cells grow and divide, the local density of the biomass is increased. At the point when the
density reaches the value of densely packing, the cells are in mechanical contact, and a field of pressure
develops due to the mechanical interaction, i.e. pushing of neighboring cells. The local velocity of biomass
Bα is given by the gradient of the local pressure developed due to cells pushing on each other:

where μα is a friction constant and P is the pressure field given by:

where ρ is the local density of the total biomass, Eα is the elastic constant for species α and ρ0 is the density
of the biomass at closed packing, i.e. when the bacterial cells are touching, but not pushing each other. If
the density ρ<ρ0, the pressure field is equal to zero.

Another model for propagation of bacterial biomass that we implemented in COMETS simulates the
cooperative behavior in a dense bacterial colony, based on the fact that certain bacterial species secrete
a lubricant17,22 that changes the local mobility of the bacterial cells. This secretion is typically dependent
on the local density of cells. In COMETS we simulate this phenomenon by modeling the biomass diffusivity
of species as:

where Dα

0 is a general linear term, and Dα
kρk depends on the local biomass density to the power of k.

https://paperpile.com/c/4oq2e3/zom0M
https://paperpile.com/c/4oq2e3/zom0M
https://paperpile.com/c/4oq2e3/zom0M
https://paperpile.com/c/4oq2e3/bH3vp
https://paperpile.com/c/4oq2e3/epXpF+aaBZQ

In addition to the dependence of Dα on the biomass density, the diffusivity of the biomass may optionally
be restricted to the parts of the biomass field that are actively growing. We implement this feature by
multiplying Dα with the Hill function:

where ΔBα is the local biomass change due to growth in a single discrete time step, and n and K are the
Hill function parameters.

The parameters of the models for the biomass propagation can be set separately for each model in a
COMETS simulation. The biomass propagation parameters are independent of the metabolic properties
of a model, and can be set separately in the model input file. This way, one can include in a simulation
either (i) species that are metabolically different, but have similar or identical biomass propagation
properties, or (ii) species that are metabolically identical, but differ in their physical properties, or (iii)
different strains with completely identical metabolic and physical properties, as we illustrate in Procedure
7.

The last term in the equation for biomass propagation models the local growth (and/or death) of the
biomass. Typically, this term is proportional to the biomass, and a pre-factor given by the growth rate of
the biomass. In COMETS, the growth rate of the local biomass is determined by the metabolic activity in
the model, and is a function of the local quantity (formally concentration) of the external
nutrients/metabolites. In COMETS, we calculate the growth rate utilizing the Flux Balance Analysis
methodology (as described above). The local growth rate can also be augmented by a death rate that
removes a fraction of the biomass at each time step.

Nutrient propagation. In addition to the biomass propagation, COMETS simulates the spatio-temporal
dynamics of the metabolites/nutrients that are taken up and/or secreted by the organisms. The
dynamics of the external metabolite is determined by their uptake and secretion by the organisms, as
well as their convection over the spatial layout:

Here the diffusivity of the metabolites may also be locally defined, or/and can depend on the local
biomass content.

Barriers. Propagation of biomass or nutrients can be prevented into certain lattice locations by the
placement of barriers. Barriers act as reflective boundaries for diffusion and biomass motion
calculations. In the python toolbox, a helper function (“grow_rocks”, see Procedure 6) is included to
create a common clustered barrier, which works as follows: grow_rocks first picks n random locations
within the allowed range. Then, mean_size * n - n additional points are added to these seed locations.
For each new point, one random location out of the set of all possible unoccupied locations next to
occupied locations are chosen. If an unoccupied location is adjacent to >1 occupied location, its chance
of being chosen is increased by 100% for each occupied adjacent location. Only lattice points directly to
the NSEW of occupied locations are considered. This process is repeated until all new points are
assigned.

Demographic and growth noise. Two types of stochastic noise are implemented in COMETS. Growth
rate noise consists of a simple broadening of the growth rate with a Gaussian noise term. Instead of
implementing the growth rate as calculated by the FBA algorithm, it is sampled from a Gaussian
distribution centered at the FBA obtained growth rate. The user should be aware that this broadening is

meant to be very small, since it may lead to a growth rate that is temporarily higher than the FBA
maximum. While this noise will average out in a sufficiently long simulation run the user may want to
verify that the variation due to this noise is indeed small in each simulation step. When applying this
type of noise the user should also be aware that the uptake of nutrient is proportional to the biomass,
and it will vary proportionally to the applied noise.

Demographic (shot) noise is given as a stochastic term in:

where Bν is the biomass of species ν, η is white noise and σ is a parameter that determines the
magnitude of the noise. The demographic noise is implemented in COMETS according to the method
described in 23.

The change of the biomass from the growth term is first calculated, then it is resampled in two steps
according to the procedure in23. First, we sample the shape parameter of the Gamma distribution from
the Poisson distribution:

where:

.
Then, with the sampled α, we sample from the Gamma distribution:

where the scale parameter β=1 and Γ(α) is the Gamma function.
The new biomass is given by:

.

Extracellular reactions. COMETS includes the capability to use kinetic rate laws to simulate two types of
reactions involving extracellular media components. The first are elementary reactions of arbitrary order
with any number of reactants or products, of the form

for reactants M and products P, with respective stoichiometries x and y, and with a reaction rate

given the rate constant k. The second type are enzyme-catalyzed reactions with a single substrate and
any number of products, of the form

where the stoichiometry of the substrate S is always assumed to be 1. The reaction rate is determined
by the Michaelis-Menten equation

that accounts for the concentrations of the enzyme Ε and the substrate S the turnover rate kcat, and the
half-saturation concentration KM.

https://paperpile.com/c/4oq2e3/47J5A
https://paperpile.com/c/4oq2e3/47J5A

Changes in metabolite concentrations over the course of a single simulation timestep are calculated by
converting the set of all extracellular reactions into a system of ordinary differential equations, then
approximating the solution with the classical Runge-Kutta integrator from the Apache Commons Math
library (http://commons.apache.org/). The process of updating metabolite concentrations by applying
the effects of extracellular reactions happens once during each simulation timestep, after metabolites
have been updated by the dFBA process and before diffusion occurs.

Random mutation. In addition to ecological dynamics, COMETS also has the capability of mutating
species during the simulation, which results in the capability of simulating evolutionary dynamics.
Mutations occur during growth: at each iteration and for each species α, COMETS first computes the
number of new individual cells arising in the previous time interval Δt as

where CS is the size of a single cell (in grams of dry weight, specified by the parameter cellSize). Given
the total population growth NG and mutation rate μ, COMETS stochastically samples a number from a
Poisson distribution with mean NGμ (or a binomial if populations contain less than 10 cell divisions). The
resulting mutants - new stoichiometric models with modified stoichiometry based on a set of rules (see
below) - are then placed randomly in cells containing biomass of the ancestor, with a probability per cell
of the simulation grid proportional to the fraction of NG in that cell. The new mutant populations are also
mutable with the same mutation rates as the ancestor, allowing the accumulation of mutations in time.

Two types of mutations are implemented in COMETS, reaction knock-out and reaction knock-in. The
knock-out rate μKO is set using the parameter mutRate, and represents the knock-out rate per generation
and per reaction. Thus, μ=RμKO, where R is the number of reactions of a given model. In contrast to
knock-outs, the knock-in rate is computed per generation and is set up using the addRate parameter. In
order to simulate knock-in mutations (i.e. reaction additions) models must be previously prepared by
adding all the reactions that we want to be potential additions to the model or models, with both upper
and lower bounds equal to 0. These reactions will initially be unavailable to the optimizer, and become
available only once “added”, i.e. once their upper bound is set to 1000 by COMETS during the
simulation. Future plans include implementing mutations in genes, that would propagate to reactions
using gene-to-reaction logical relationships.

Numerical integration of spatio-temporal equations. The method used for numerical integration of the
partial differential equations in COMETS depends on the type of equation, i.e. the type of model of
spatio-temporal propagation, that is being solved. The three different models for propagation of
biomass, the simple diffusion, propagation by pushing and non-linear cooperative diffusion, cannot be
optimally solved by a single method.

For the simple (linear) diffusion model of biomass propagation the user can choose between two
implemented numerical methods for its solution. One is using an alternating direction implicit (ADI)
scheme with a central difference formulation12 and the other is an 8-point integration scheme. The
other two models of biomass propagation, the model of convection (pushing) and the non-linear
diffusion, due to the presence of the nonlinear terms, are solved by implementing the predictor-
corrector Adams-Bashford-Moulton scheme24,25. The diffusion of the media is solved by the standard
implicit method, the same as for the linear diffusion of the biomass.

http://commons.apache.org/
https://paperpile.com/c/4oq2e3/x8hoG
https://paperpile.com/c/4oq2e3/FEKeO
https://paperpile.com/c/4oq2e3/BrIml

Supplementary Discussion 2: Software architecture and the basics of

using COMETS

Software architecture of COMETS

Core architecture

The core of COMETS is written in Java and performs its main functionalities: dynamic FBA, propagation

of biomass and media in time and space, extracellular reactions or evolution.

The code is organized in several Java packages, each containing several classes. The core of the code is in

the following packages:

comets: This package contains the top-most super-classes and interfaces. This organization of the

superclasses was done with a future development in mind, including the possibility of modules that

compute growth with algorithms other than FBA.

fba: This package contains the core of the program, including most of the data structure as well as the

run methods that perform the core procedures of the simulation. Here are most of the FBA specific

subclasses of the superclasses found in the comets package.

ui: This package contains the classes related to the graphical user interface.

util: The util package contains general mathematical utilities, independent of the FBA methodology, such

as several PDE solvers.

The Java core of the FBA methodology in COMETS is structured in four main classes, organized

hierarchically:

Model: Instances of this class are metabolic models which are optimized using FBA in the simulations.

This class also has a method to mutate models, i.e. add or remove reactions, used for evolutionary

simulations.

Cell: The spatial structure in COMETS is structured as a grid (either 2 or 3-dimensional). The cell class

represents what we refer to earlier as a “box”, i.e. a single location on this grid, with defined

dimensions. Note that this cell should not be confused with a biological cell. A cell class contains models

and media, whose biomasses and concentration are updated in each iteration of the dynamic FBA

simulation. This class also performs the extracellular reactions, if present.

World: The world contains all the cells (i.e. boxes, see cell class above) with their models and media.

After each iteration, this class performs the computations necessary to propagate biomass and media

between cells. In evolutionary simulations, it also decides stochastically which models mutate and in

which cells.

Parameters: This class contains all the necessary parameters for running a simulation. These

parameters, their units, and default (or alternative) values are listed in the Table in Appendix 2.

Comets: This is the main class of COMETS. It integrates all of the above, runs a simulation and produces

the output.

The software contains some additional “helper” classes that deal with file loading or optimizers used by

the simulation. The central class that does the FBA optimization is the abstract class FBAOptimizer,

which has two subclasses, FBAOptimizerGurobi and FBAOptimizerGLPK.

The basics of COMETS using the MATLAB toolbox

The COMETS MATLAB Toolbox is a collection of classes and functions intended to facilitate the processes

involved in creating layouts for simulations, and includes utilities to execute COMETS within scripts from

the command line and to parse output files. Similarly to the Python Toolbox’s use of COBRAPy, the

MATLAB Toolbox uses metabolic models in the format of the COBRA Toolbox for MATLAB3.

A brief overview of the most important components of the COMETS MATLAB Toolbox follows. For more

in-depth documentation, see http://segrelab.github.io/comets-toolbox/ and

https://segrelab.github.io/comets-manualhttps://comets-manual.readthedocs.io.

Primary Tasks

Manipulating metabolic models: The MATLAB Toolbox uses stoichiometric metabolic models in the

format of the popular COBRA Toolbox for MATLAB3, allowing users familiar with COBRA to quickly get up

to speed, and allowing us to begin from model source files in an already wide-spread format. Because

COBRA is not intended to support dynamic Flux Balance Analysis, we have added fields to the model

structure that capture temporal behaviors: the setBiomassRxn() function can be used to specify a

reaction that determines the growth rate, and the setKm() and setVmax() functions allow individual

uptake reactions to be given a rate that is dependent on metabolite concentrations in a Michaelis-

Menten-like manner.

Testing if COMETS is functional: The command testComets() will check, if COMETS related

environmental variables were set properly, and if COMETS can be called from Matlab.

Creating layouts: A “layout” is the structure which represents the simulated world in a COMETS analysis,

containing sets of metabolic models with individual biomasses, as well as metabolites, across the space

of a 2-dimensional grid. A layout object contains a CometsParams object which can be saved and loaded

https://paperpile.com/c/4oq2e3/ouYfw
http://segrelab.github.io/comets-toolbox/
https://comets-manual.readthedocs.io/
https://paperpile.com/c/4oq2e3/ouYfw

in order to conveniently ensure that all simulations are performed with a user’s preferred set of

simulation parameters and default values. The layout also contains instructions for the addition or

removal of media over the course of the simulation, the diffusion properties for each organism and

metabolite, the kinetic parameters of extracellular reactions (such as decay or enzymatic degradation),

and the locations of “barrier” spaces which block diffusion. Utility functions exist to automate the

placement of some layout elements, for example placing bacterial colonies at equidistant points or

applying barrier spaces at the edges of the grid in order to create a circular plate.

Creating COMETS inputs and executing simulations: The formats of the text files required by COMETS for

models and layouts are not amenable to editing by hand, as doing so requires the user to track the

indexes of multiple elements in several lists and refer to the documentation for the details of each field.

The COMETS MATLAB Toolbox provides scripts to generate these files so that users no longer have to

concern themselves with the contents of these files, and can save input files sets using the

createCometsFiles() command or directly execute a simulation using a layout object with the

runComets() command.

Handling COMETS outputs: The various log files generated by COMETS for biomass, metabolite

concentrations, and fluxes can be loaded into MATLAB tables for easier filtering and analysis through the

functions parseBiomassLog(), parseMediaLog(), and parseFluxLog(). Utility scripts are provided which

make it simple to generate plots of these measurements over time with the functions

plotBiomassTimecourse() and plotMediaTimecourse().

Classes and Data Structures

CometsLayout: The main class which encapsulates all information involved in a single COMETS

simulation by containing media contents, the list of COBRA models, spatial information, and a single

CometsParams object. Contents of the layout should be manipulated by using the methods of the

CometsLayout class instead of being directly modified when possible, for example by editing initial

media through setMedia() or adding metabolic models through addModel().

CometsParams: A class to contain the parameters for global simulation parameters as well as model-

level default values.

File I/O

createCometsFiles(cometsLayout, [directory, layoutFileName, separatePamsFiles]): Creates the COMETS

script, layout, and model files. If separateParmasFiles is true, it creates separate files to contain the

global and package parameters. Otherwise, all parameters are included in the body of the layout file.

parseBiomassLog(fileName): Processes a MATLAB-format biomass log from a COMETS simulation.

Returns a table with the following columns:

○ t: Timestep.

○ X: X coordinate.

○ Y: Y coordinate.

○ Z: Z coordinate. Excluded in 2D simulations.

○ model: ID number of the model. Arranged as in the layout file, starting with 0.

○ biomass: biomass value in grams.

parseFluxLog(fileName): Processes a MATLAB-format reaction flux log from a COMETS simulation.

Returns a table with the following columns:

○ t: Timestep.

○ X: X coordinate.

○ Y: Y coordinate.

○ Z: Z coordinate. Excluded in 2D simulations.

○ model: ID number of the model. Arranged as in the layout file, starting with 0.

○ rxn: ID number of the reaction. Arranged as in the metabolic model, starting with 0.

○ flux: Flux through the reaction.

parseMediaLog(fileName, [metNames]): Processes a MATLAB-format media log from a COMETS

simulation. If a cell array is provided as metNames, only records for the corresponding metabolites will

be loaded. Returns a table with the following columns:

○ t: Timestep.

○ X: X coordinate.

○ Y: Y coordinate.

○ Z: Z coordinate. Excluded in 2D simulations.

○ met: ID number of the metabolite. Arranged as in the layout file, starting with 0.

○ amt: Concentration of the metabolite in millimoles.

○ metname: Name of the metabolite.

Standard Workflow

createLayout({cobraModels}): Initialize a COMETS layout with default properties as stored in the

CometsParams class, and add any metabolic models provided as arguments as though invoking

CometsLayout.addModel().

addModel(cometsLayout, cobraModel): Attaches the given model to the layout, and adds any of the

model’s exchange metabolites to the layout’s list of media components.

setMedia(cometsLayout,{metaboliteNames},concentrations): Set the initial media concentrations for

every space in the simulation. To alter the initial media in an individual grid cell, use the method

setInitialMediaInCell() instead.

setInitialPop(cometsLayout, [format, amount, resize]): Sets the initial population for each metabolic

model in the given cometsLayout, arranged according to the format parameter, to the value or values

provided in the amount parameter in grams. If resize is not false, the dimensions of the cometsLayout

will be adjusted as well. Format may be one of two options:

○ ‘Colonies’ (default): Up to four evenly spaced colonies will be created, one for each

model in the cometsLayout. Default dimensions 100 by 100 grid cells.

○ ‘1x1’: Biomass for all models will be placed in the center grid cell. Default dimensions 1

by 1 grid cell.

RunComets(cometsLayout, [directory]): Creates layout and model files in the given directory (defaulting

to the current working directory) and executes a simulation by invoking COMETS through the command

line.

The basics of COMETS using the Python Toolbox

We will first walk through the basic functionalities of COMETS using the Python Toolbox, and more

specific examples of usage will be provided in the next sections. Once cometspy has been installed, a

user can implement this and all other python protocols in one of two ways: 1) The user can copy the

code into a python script and run it. 2) We have also provided the protocols in jupyter notebook format.

To use these included files, start the jupyter notebook by typing the following command line:

jupyter notebook

In Windows this is best done by going to the start menu, and running "Anaconda Powershell Prompt".

The above command can be run from the Anaconda Powershell.

This will launch a browser tab. On this tab, load the corresponding protocol through file-open and

finding the [name of protocol].ipynb file (for example, chemostat.ipynb). To run each jupyter notebook

click on the kernel tab and then click Restart & Run All. Warning: for some protocols, this may take from

five minutes to several hours.

Create of the COMETS input files

1. Import the python comets toolbox, the cobra toolbox and the cobra.test tools.

import cobra
import cobra.test
import cometspy as c

2. Load an existing model using COBRAPy. Here, we use the custom function

cobra.test.create_test_model() from the COBRAPy toolbox to load the E. coli model.

Load a textbook example model using the COBRAPy toolbox
test_model = cobra.test.create_test_model('textbook')

3. Use the loaded COBRA model to build a COMETS model class, which allows us to change

COMETS-specific model parameters, such as initial population sizes.

Use the above model to create a COMETS model and open exchanges
test_model = c.model(test_model)

test_model.open_exchanges()

Change comets specific parameters, e.g. the initial biomass of the model
test_model.initial_pop = [0, 0, 1e-7]

4. Use the params class to generate a list (i.e. a python dict object) containing the default

parameter values.

Create a parameters object with default values
my_params = c.params()

5. Change the parameter values as desired

Change the parameter "maxCycles" corresponding to the number of iterations in our simulation
my_params.set_param('maxCycles', 100)

6. Check which other parameters are available and their current value.

See available parameters and their values

my_params.show_params()

7. Use the layout class to generate a layout with the previously prepared model as input. Then, add

minimal media components.

my_layout = c.layout(test_model)
my_layout.set_specific_metabolite('glc__D_e', 0.011)

my_layout.set_specific_metabolite('o2_e',1000);

my_layout.set_specific_metabolite('nh4_e',1000);

my_layout.set_specific_metabolite('pi_e',1000);

my_layout.set_specific_metabolite('h2o_e',1000);

my_layout.set_specific_metabolite('h_e',1000);

8. Visualize the media composition and relevant COMETS parameters (diffusion constants, “static”

and “refresh” values), which is stored as a pandas dataframe:

My_layout.media # this shows a pandas data.frame

Run the COMETS simulation

9. Define the comets object by passing the previously created layout and a parameters.

my_simulation = c.comets(my_layout, my_params)

10. Run the simulation. (Note that in this example, there will be no growth as we did not define a

media allowing for it, e.g. the carbon source):

my_simulation.run()

11. Access the output of the COMETS simulation run

print(my_simulation.run_output) # this shows initialization and biomasses at each time step. This also
shows a Java stack trace if COMETS had an internal error

12. Access the errors of the COMETS simulation run

print(my_simulation.run_errors) # should be empty if everything worked

The results of the successful simulation are stored in several fields in the comets object, depending on

whether the parameters writeTotalBiomasslog, writeBiomassLog, writeFluxLog and writeMediaLog were

set to true.

● The field total_biomass stores the total biomass (summed up over all coordinates) for each

timepoint and species.

● The field biomass stores detailed biomass values for each timepoint, coordinate and species.

● The field media stores the composition of the media at each timepoint.

● The field fluxes stores the metabolic fluxes for each species, coordinate and timepoint.

Additionally, specific comets models will have additional output fields; for instance, specificMedia will

contain the concentration of specific media components if set up. Similarly, if we run a simulation with

evolution, the field genotypes will store information about each species such as its ancestor and which

mutation it suffered.

All of the output files are stored as pandas dataframes which can be further analyzed or plotted using

standard Python tools.

The basics of COMETS using the command line

COMETS is a Java application and is invoked by the following commands, typically packaged in a script

file comets_scr. In Windows this file will typically have a .bat extension, comets_scr.bat.

In Windows, this file will contain the line:

java -classpath

"%COMETS_HOME%/lib/colt/lib/colt.jar";"%COMETS_HOME%/lib/colt/lib/concurrent.jar";"%COMETS_H

OME%/lib/jdistlib-0.4.5-bin.jar";"%COMETS_HOME%/lib/commons-lang3-3.9/commons-lang3-3.9-

sources.jar";"%COMETS_HOME%/lib/commons-lang3-3.9/commons-lang3-

3.9.jar";"%COMETS_HOME%/lib/commons-rng-1.0/commons-rng-simple-

1.0.jar";"%COMETS_HOME%/lib/commons-rng-1.0/commons-rng-sampling-

1.0.jar";"%COMETS_HOME%/lib/commons-rng-1.0/commons-rng-jmh-

1.0.jar";"%COMETS_HOME%/lib/commons-rng-1.0/commons-rng-core-

1.0.jar";"%COMETS_HOME%/lib/commons-rng-1.0/commons-rng-client-api-

1.0.jar";"%COMETS_HOME%/lib/commons-math3-3.6.1/commons-math3-

3.6.1.jar";"%COMETS_HOME%/lib/commons-math3-3.6.1/commons-math3-3.6.1-

tools.jar";"%COMETS_HOME%/lib/junit/junit-4.12.jar";"%COMETS_HOME%//lib/junit/hamcrest-core-

1.3.jar";"%GUROBI_HOME%/lib/gurobi.jar";"%COMETS_HOME%/lib/jogl/jogamp-all-platforms/jar/jogl-

all.jar";"%COMETS_HOME%/lib/jogl/jogamp-all-platforms/jar/gluegen-

rt.jar";"%COMETS_HOME%/lib/jogl/jogamp-all-

platforms/jar/gluegen.jar";"%COMETS_HOME%/lib/jogl/jogamp-all-platforms/jar/gluegen-rt-natives-linux-

amd64.jar";"%COMETS_HOME%/lib/jogl/jogamp-all-platforms/jar/jogl-all-natives-linux-

amd64.jar";"%COMETS_HOME%/lib/JMatIO/lib/jmatio.jar";"%COMETS_HOME%/lib/JMatIO/JMatIO-

041212/lib/jmatio.jar";"%COMETS_HOME%/bin/comets_2.10.0.jar" -

Djava.library.path="%GUROBI_HOME%/lib";"%GUROBI_HOME%/bin";"%COMETS_HOME%/lib/jogl/jog

amp-all-platforms/lib" edu.bu.segrelab.comets.Comets -loader

edu.bu.segrelab.comets.fba.FBACometsLoader -script %1

In Linux and MacOS:

#!/bin/bash

if [-z "$1"]; then

 echo usage: $0 \"comets script name\"

 exit

fi

SCRIPT=$1

java -classpath

$COMETS_HOME/lib/colt/lib/colt.jar:$COMETS_HOME/lib/colt/lib/concurrent.jar:$COMETS_HOME/lib/jdi

stlib-0.4.5-bin.jar:$COMETS_HOME/lib/commons-lang3-3.9/commons-lang3-3.9-

sources.jar:$COMETS_HOME/lib/commons-lang3-3.9/commons-lang3-

3.9.jar:$COMETS_HOME/lib/commons-rng-1.0/commons-rng-simple-

1.0.jar:$COMETS_HOME/lib/commons-rng-1.0/commons-rng-sampling-

1.0.jar:$COMETS_HOME/lib/commons-rng-1.0/commons-rng-jmh-

1.0.jar:$COMETS_HOME/lib/commons-rng-1.0/commons-rng-core-

1.0.jar:$COMETS_HOME/lib/commons-rng-1.0/commons-rng-client-api-

1.0.jar:$COMETS_HOME/lib/commons-math3-3.6.1/commons-math3-

3.6.1.jar:$COMETS_HOME/lib/commons-math3-3.6.1/commons-math3-3.6.1-

tools.jar:$COMETS_HOME/lib/junit/junit-4.12.jar:$COMETS_HOME//lib/junit/hamcrest-core-

1.3.jar:/usr/local/share/java/glpk-

java.jar:$GUROBI_COMETS_HOME/lib/gurobi.jar:$COMETS_HOME/lib/jogl/jogamp-all-platforms/jar/jogl-

all.jar:$COMETS_HOME/lib/jogl/jogamp-all-platforms/jar/gluegen-rt.jar:$COMETS_HOME/lib/jogl/jogamp-

all-platforms/jar/gluegen.jar:$COMETS_HOME/lib/jogl/jogamp-all-platforms/jar/gluegen-rt-natives-linux-

amd64.jar:$COMETS_HOME/lib/jogl/jogamp-all-platforms/jar/jogl-all-natives-linux-

amd64.jar:$COMETS_HOME/lib/JMatIO/lib/jmatio.jar:$COMETS_HOME/lib/JMatIO/JMatIO-

041212/lib/jmatio.jar:$COMETS_HOME/bin/comets_2.10.0.jar -

Djava.library.path=$GUROBI_COMETS_HOME/lib/:$COMETS_HOME/lib/jogl/jogamp-all-platforms/lib

edu.bu.segrelab.comets.Comets -loader edu.bu.segrelab.comets.fba.FBACometsLoader -script

$SCRIPT

In Linux and MacOS certainly this file may be written in any alternative shells. Here we give an example

only for bash.

Comets is run on a command line by executing the comets_scr script (comets_scr.bat in Windows)

which take as an argument the name of an input file, in this case named comets_script:

In Linux and MacOS by executing on the command line prompt:

comets_scr comets_script

In Windows:

comets_scr.bat comets_script

Here we assumed that the path to the directory $COMETS_HOME where Comets is installed, and

where comets_scr is has been set properly, and that it has been added to the user's path. Alternatively,

comets_scr can be copied in the working directory, and the above command can be executed as

described above or as:

./comets_scr comets_script

The name of the comets_script file is arbitrary and may be customized. If however the above java

command in the comets_scr file is typed directly on the command line, the variable $SCRIPT (%1 in

Windows) should be replaced with the name of the comets_script file. Also, the variables

$COMETS_HOME and $GUROBI_COMETS_HOME (%COMETS_HOME% and

%GUROBI_COMETS_HOME%) must be set, to the directories where Comets and Gurobi are installed.

These variables will be set during the installation process, however the most common reason for failure

to launch Comets is the failure to properly set them.

The input file comets_script contains the information on the names of the two parameters and one

layout input file:

load_comets_parameters global_params.txt

load_package_parameters package_params.txt

load_layout layout.txt

Here global_params.txt, package_params.txt and layout.txt are the names of the input files that contain

the parameters and the spatial layout correspondingly. The names of these files are arbitrary and may

be customized. We have provided examples of these files in the text of the procedures.

The procedures for executing a simulation job therefore (as illustrated in Fig. 2 in the main text) is as

follows:

1. Prepare the input files global_params.txt, package_params.txt and layout.txt in the working

directory.

2. Prepare the files comets_scripts with the above names in the working directory.

3. Run comets_scr comets_script on the command line.

A warning is due here, that if the terminal where this command was executed is closed before the

Comets run has finished, the job will be abruptly stopped, without finishing. One way to avoid this is to

run it in the background by the nohup command in Linux and MacOS:

nohup comets_scr comets_script &

A common environment where Comets is one with a job queuing system. This is typically done on

computational clusters. Here we present an example of a typical way Comets job can be submitted to a

queue with the qsub command:

qsub -pe omp 16 -l h_rt=48:00:00 qscript

The two options are specifying the allocated resources for the job, in this example we are requesting 16

slots for Shared Memory applications, and a total run time of at least 48 hours. The file qscript contains

the steps necessary to run Comets:

#!/bin/bash -l

module load gurobi/9.0.0

./comets_scr comets_script

The first line simply identifies the file as a bash script, the second line loads the necessary cluster

module, and the third line is the actual command to run Comets, as we discussed above.

Supplementary Discussion 3: Spatial settings in the cometspy toolbox

The cometspy toolbox is capable of operating all spatial settings available in COMETS. Here, we describe

the minimal requirements to run a spatial simulation, and then describe some optional methods for

more complex simulations. We recommend also to spend some time looking through the api documents

available at https://cometspy.readthedocs.io/en/latest/index.html for a full list of cometspy objects and

methods. Also, all methods have descriptions of usage when examined with help().

Minimal settings

For clarity, first we initialize cometspy and generate a test model using cobrapy’s cobra.test module.

import cometspy as c
import cobra.test
ecoli_core = cobra.test.create_test_model(‘textbook’)
ecoli = c.model(ecoli_core)
ecoli.open_exchanges()

1. The primary setting which must be changed to have a spatial simulation is to change the grid

attribute of the layout object. This attribute contains two numbers which specify the length and width of

the spatial simulation, in lattice boxes.

ly = c.layout()
ly.grid = (10, 10) # sets up a spatial simulation of length = 10, width = 10

2. Additionally, model biomass can then be specified within this spatial range. This is done by

providing a list of lists to the model’s initial_pop attribute. In each list, we first state the x location, then

the y location, then the initial number of grams of biomass. For example, here we put 1.e-6 grams of

biomass at location (x = 3, y = 5) and 2.e-7 grams of biomass at location (x = 8, y = 5):

ecoli.initial_pop = [[3, 5, 1.e-6], [8, 5, 2.e-7]]

3. Now we add that model to the spatial layout.

ly.add_model(ecoli)

4. Set the spaceWidth parameter. Just like in a single-box simulation, the spaceWidth parameter

(units of cm) is what sets the volume of a box (spaceWidth ^ 3), which influences the concentration of

metabolites and therefore interacts with Michaelis-Menten uptake rates. However, it is even more

critical in spatial simulations, because it will change how quickly metabolites and biomass will diffuse to

adjacent boxes for a given diffusion constant.

P = c.params()
p.set_param(“spaceWidth”, 0.1) # in cm

That is the minimal number of changes to create a spatial simulation. Metabolite concentrations will still

need to be initialized. If a user sets the initial metabolite abundances using the standard

set_specific_metabolite([metabolite name], [mmol]) method of the layout object, those metabolites will

be put homogeneously into every box. The layout object and params object will still need to be added to

a comets object to run, as usual.

https://cometspy.readthedocs.io/en/latest/index.html

Optional settings

1. Layout methods to set initial mmol amounts of metabolites in specific locations, as well as their

refresh rates and constant (static) values:

layout.set_specific_metabolite_at_location(metabolite_name, location, amount)

layout.set_specific_refresh_at_location(metabolite_name, location, amount)

layout.set_specific_static_at_location(metabolite_name, location, amount)

 2. Layout method to add impenetrable barriers that block diffusion and biomass motion:

layout.add_barriers(barrier_locations)

 3. Layout methods that set up “regions” in which metabolite diffusion parameters and friction can

differ.

layout.set_region_map(region_map)

layout.set_region_parameters(region, diffusion, friction)

 4. Model method and associated params setting to use non-linear biomass diffusion:

model.add_nonlinear_diffusion_parameters()

params.set_param(“biomassMotionStyle”, “ConvNonlin Diffusion 2D”)

 5. Model method and associated params setting to use convective biomass motion:

model.add_convection_parameters()

params.set_param(“biomassMotionStyle”, “Convection 2D”)

 6. Params settings to set universal biomass diffusion constant

params.set_param(“flowDiffRate”, number)

 7. Layout method to set all metabolites’, or metabolite-specific, diffusion constants

layout.set_metabolite_diffusion(diffusion_constant)

layout.set_specific_metabolite_diffusion(metabolite_name, diffusion_constant)

 8. Params settings to save spatially-explicit data:

params.set_param(“writeBiomassLog”, True)
params.set_param(“BiomassLogRate”, number)
params.set_param(“writeMediaLog”, True)
params.set_param(“MediaLogRate”, number)
params.set_param(“writeFluxLog”, True)
params.set_param(“FluxLogRate”, number)

9. Access to saved results

comets.biomass # is a pandas dataframe
comets.media # is a pandas dataframe
comets.fluxes_by_species # is a dictionary with model ids as keys and pandas dataframes as values

Supplementary Discussion 4: Detailed structure of the Output Files

Console output

The standard console output of COMETS is either displayed on the GUI console or saved in an output file

if run on a queueing system. The console output format is typically:

-script
running script file: comets_script
Loading layout file 'layout.txt'...
Found 2 model files!
Loading 'e_coli_core1.txt' ...
Loading 'e_coli_core1.txt' ...
Done!
 Testing default parameters...
Done!
Optimizer status code = 5 (looks ok!)
objective solution = [D@99e8be2
Loading 'e_coli_core2.txt' ...
Loading 'e_coli_core2.txt' ...
Done!
 Testing default parameters...
Done!
Optimizer status code = 5 (looks ok!)
objective solution = [D@7f1a75d
Constructing world...
Done!
medialist ac[e] acald[e] akg[e] co2[e] etoh[e] for[e] fru[e] fum[e] glc__D[e] gln__L[e]
glu__L[e] h2o[e] h[e] lac__D[e] mal__L[e] nh4[e] o2[e] pi[e] pyr[e] succ[e]
WRITING MEDIA LOG
Cycle 1
Total biomass:
Model 0: 2.5117253201512343E-6
Model 1: 2.51172552547532E-6
Cycle complete in 0.695s
Cycle 2
Total biomass:
Model 0: 2.52350543670516E-6
Model 1: 2.523505417783118E-6
Cycle complete in 0.254s
…
Cycle 10000
Total biomass:
Model 0: 1.8129744692017875E-5
Model 1: 1.8466722853528566E-5
WRITING MEDIA LOG
Cycle complete in 0.315s
Cycle 10001
End of simulation
Total time = 1343.506s

In addition to the console output, if errors are detected, they are written in the standard error output

file. The possible error messages are documented in the Troubleshooting section.

Output files

The generation of the output file is optional and is controlled with the corresponding parameter in the

global parameters input file. The rate of the output recording is also controlled by an input parameter.

Total biomass file.

This is a space-delimited text format file with the first column containing the simulation step,

and the integrated total biomass for each model in separate columns:

0 5E-6
1 5.0234319275E-6
2 5.0469736628E-6
3 5.0706257205E-6
4 5.0943886175E-6

The biomass unit is grams.

Biomass file.

This is a MATLAB .m format file with the record of the spatial layout of the biomass. The variable

is of the following format:

biomass_<step>_<model> (<xcoordinate>,<ycoordinate>)= <amount>;

Example of a biomass file of a 100x100 points layout, containing two models with initial

population at the center of the layout. The biomass recording rate is each 100 simulation steps.

biomass_0_0 = sparse(100, 100);
biomass_0_0(51, 51) = 2.5E-6;
biomass_0_1 = sparse(100, 100);
biomass_0_1(51, 51) = 2.5E-6;
biomass_100_0 = sparse(100, 100);
biomass_100_0(51, 51) = 3.5426406048E-6;
biomass_100_1 = sparse(100, 100);
biomass_100_1(51, 51) = 3.4688274362E-6;

The biomass unit is grams.

Media file

The media file is a MATLAB .m file format with the record of all external metabolite amounts in

mmol units. The first line is an array of all metabolite names. The format is:

media_<time>{<metabolite index>}(<xcoordinate>, <ycoordinate>) = <amount>;

media_names = { 'ac[e]', 'acald[e]', 'akg[e]', 'co2[e]', 'etoh[e]', 'for[e]', 'fru[e]', 'fum[e]', 'glc__D[e]',
'gln__L[e]', 'glu__L[e]', 'h2o[e]', 'h[e]', 'lac__D[e]', 'mal__L[e]', 'nh4[e]', 'o2[e]', 'pi[e]', 'pyr[e]',
'succ[e]'};
media_0{1} = sparse(zeros(100, 100));
media_0{2} = sparse(zeros(100, 100));
media_0{3} = sparse(zeros(100, 100));
…
media_10000{18}(100, 97) = 1E0;
media_10000{18}(100, 98) = 1E0;
media_10000{18}(100, 99) = 1E0;
media_10000{18}(100, 100) = 1E0;
media_10000{19} = sparse(zeros(100, 100));
media_10000{20} = sparse(zeros(100, 100));

Fluxes file

This MATLAB .m format file contains the record of all fluxes of all models in each spatial point

for a recorded time. The format is:

fluxes{<time>}{<x coordinate>}{<y coordinate>}{<model index>} = [<flux values>];

fluxes{10}{1}{1}{1} = [-1.5084028022E1 0E0 -1.4742953314E1 5.0561349588E-1
5.0561349588E-1 -1.4742953314E1 0E0 0E0 0E0 -1.5084028022E1 8.39E0 -1.0840773838E1
4.6863796078E-1 0E0 5.0561349588E-1 0E0 0E0 3.5002712702E1 -1.5084028022E1
1.4742953314E1 -0E0 -0E0 0E0 1.5084028022E1 3.1251640737E1 -0E0 -0E0 -
1.8474787691E1 -0E0 -0E0 5.5395471544E1 -1.167028166E1 -0E0 -0E0 -2.5553890725E0 -
0E0 -1.7239784663E0 -0E0 -0E0];

Complete record file

This is a file in the MATLAB .mat format that contains all the input and output information for a

given COMETS run. This file can be of a very large size and is meant to be used only for archiving

purposes.

Matfile_example =

 struct with fields:

 allowCellOverlap: 'true'
 deathRate: 0
 defaultHill: 1
 defaultKm: 0.0100
 defaultVmax: 10
 exchangestyle: 'Monod Style'
 flowDiffRate: 3.0000e-10
 flux: [5-D double]
 growthDiffRate: 0
 maxSpaceBiomass: 8.8000e-06
 minSpaceBiomass: 1.0000e-10
 numDiffPerStep: 10
 numRunThreads: 10
 showCycleCount: 'true'
 showCycleTime: 'true'
 spaceWidth: 0.0200
 timeStep: 0.0100
 timeStepsSaved: [11×1 double]
 toroidalWorld: 'false'
 total_biomass: [11×2 double]

Supplementary Discussion 5: Setting the environmental variables in

Mac OS X

The environment variables for COMETS and Gurobi can be manually set on Mac OS X using plist files,

which are loaded at login by the system’s launchctl service. Three plist files are required to run COMETS

using the Matlab toolbox: one for COMETS_HOME, and two for Gurobi (one for GUROBI_HOME and one

for the license file). These can be created and saved as follows:

1. Quit MATLAB

2. Open a text editor and paste the following commands into a blank file:

<?xml version="1.0" encoding="UTF-8"?>

 <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

 <plist version="1.0">

 <dict>

 <key>Label</key>

 <string>ENVIRONMENT_VARIABLE</string>

 <key>ProgramArguments</key>

 <array>

 <string>/bin/launchctl</string>

 <string>setenv</string>

 <string>ENVIRONMENT_VARIABLE</string>

 <string>ENVIRONMENT_VARIABLE_LOCATION</string>

 </array>

 <key>RunAtLoad</key>

 <true/>

 </dict>

 </plist>

3. For each of the three files, replace ‘ENVIRONMENT_VARIABLE’ and
‘ENVIRONMENT_VARIABLE_LOCATION’ as follows:

ENVIRONMENT_VARIABLE ENVIRONMENT_VARIABLE_LOCATION

COMETS_HOME /Applications/COMETS

GUROBI_HOME /Library/gurobi902/mac64

GRB_LICENSE_FILE / Library/gurobi902/gurobi.lic

Note: the directories listed above are the default installation locations for COMETS and Gurobi.

These locations must be changed in the plist files being generated if COMETS or Gurobi were

installed in different directories.

4. Save each of the plist files, e.g. as ‘cometspath.plist,’ ‘gurobipath.plist,’ and
‘gurobilicensepath.plist’ in the directory ~/Library/LaunchAgents/.

5. Either reboot your Mac to load the plist files, or load them manually as follows:

a. Open Terminal and run the following commands:

launchctl load ~/Library/LaunchAgents/cometspath.plist

launchctl load ~/Library/LaunchAgents/gurobipath.plist

launchctl load ~/Library/LaunchAgents/gurobilicensepath.plist

b. Quit then reopen Terminal. You can run the command printenv to verify that the
environment variables exist.

6. Open MATLAB and use the getenv function (e.g. getenv(‘COMETS_HOME’)) to verify
that the environment variables have been loaded.

Supplementary Table 1: Table of COMETS input parameters, with units,

default value and a short definition.

Simulation parameters

Parameter Unit Default value Definition or notes

timeStep hour 1.0 The amount of time
between two
consecutive
simulation updates.

spaceWidth cm 0.1 Width of one side of
the 3d box in the 2D
or 3D grid.
Therefore, volume
of a box =
spaceWidth3.
Warning: this value
matters for molarity
calculations.

maxCycles steps Unlimited Number of DFBA
iterations (steps) for
the simulation. The
total simulation time
will be timeStep *
maxCycles.

deathRate fraction/timepoint 0.1 The rate of biomass
removal per time
step.

maxSpaceBiomass gr 10 Maximum biomass
allowed in one grid
box.

minSpaceBiomass gr 1e-10 Minimum biomass
in one grid box not
considered zero.

cellSize gr 4.3e-13 Grams in one cell.
Relevant in
simulations with
serial dilutions or
mutations.

exchangeStyle Standard FBA,
Monod Style,
Pseudo-Monod Style

Standard FBA The uptake function
for the exchange
reactions.

defaultVmax mmol (gCDW)-1
(hour)-1

10 Default maximum
uptake rate of a
metabolite for the
Monod Style
exchange. This
overrides exchange
reaction boundaries
with greater
magnitude, when
using Monod
updating.

defaultKm mmol (cm3)-1 5 Default
concentration of a
metabolite in which
uptake is half-
maximal. This value
is compared with
the metabolite
concentration /
spaceWidth3 when
computing Monod
uptake.

defaultHill 2 Hill coefficient.
Alters the shape of
the Monod uptake
curve.

defaultAlpha 1/(mmol (cm3)-1) 1 The default Alpha
coefficient (slope)
for the Pseudo-
Monod style
exchange.

defaultW mmol (gCDW)-1
(hour)-1

10 The default W
coefficient (plateau)
for the Pseudo-
Monod style
exchange.

minConcentration mmol (cm3)-1 1e-26 Minimal

concentration of
metabolites in the
media.

numRunThreads 1 If >1, allow
multithreaded
computation. The
number of threads
to run in parallel.

numDiffPerStep 10 Number of substeps
of media diffusion
per biomass update
step.

allowCellOverlap FALSE If true, allows
different species to
occupy the same
space.

Parameters related to spatial propagation of either biomass or metabolites

Parameter Units/Values
allowed

Default Description

biomassMotionStyle Diffusion 2D(Crank-
Nicolson), Diffusion
2D(Eight Point),
Diffusion 3D,
Convection 2D,
Convection 3D,
ConvNonlin
Diffusion 2D

Diffusion 2D(Crank-
Nicolson)

Sets the method
used for
propagation of
biomass. Only one of
the indicated strings
is an allowed value.

growthDiffRate cm2/s 1.00E-07 The default diffusion
constant for the
actively growing
biomass in the
Diffusion 2D (CN
and EP) model.

flowDiffRate cm2/s 1.00E-07 The default diffusion
constant for the
non-growing
biomass in the
Diffusion 2D (CN

and FP) model.

defaultDiffConst cm2/s 1.00E-05 The default diffusion
constant for
extracellular
metabolites.

Parameters related to log file writing

Parameter Default Description

useLogNameTimeStamp TRUE If TRUE, appends a time stamp to
every log file name.

writeFluxLog FALSE If true, writes fluxes out to a log file.

fluxLogName flux_log.txt The name of the flux log file.

fluxLogRate 1 How often to write to the flux file
(number of simulation steps). A value
of 1 will cause writing after every step.

writeMediaLog FALSE If true, writes media information to a
log file.

mediaLogName media_log.txt The name of the media log file.

mediaLogRate 1 How often to write to the media file.

writeSpecificMediaLog FALSE If true, writes the media log only for
the metabolites specified by
specificMedia parameter.

specificMediaLogName specific_media_log.tx
t

The name of the specific media log file.

specificMedia Names of metabolites for which we
want to store media.

writeBiomassLog FALSE If true, writes biomass information to a
log file.

biomassLogName biomass_log.txt The name of the biomass log file.

biomassLogRate 1 How often to write to the biomass file.

writeTotalBiomassLog FALSE If true, writes a summation of all
biomass information to a log file.

totalBiomassLogName total_biomass_log.txt The name of the total biomass log file.

totalBiomassLogRate 1 How often to write to the total biomass
log file.

Parameters related to graphical user interface and image caption

Parameter Default Description

showGraphics TRUE If true, the image will be
displayed.

colorRelative TRUE If true, colors each space
relative to the space with
the highest value.

showCycleTime TRUE If true, shows the time it
took to finish the fba cycle
in the output.

showCycleCount TRUE If true, shows the current
cycle number in the output.

pauseOnStep TRUE (false if running a
script)

If true, pauses the
simulation after completing
a step.

displayLayer 0 Sets the current medium
component (or biomass) to
be displayed. The user must
determine the number of
the medium or biomass
from the layout.

pixelScale 4 The number of pixels to
render for each space.

saveSlideshow FALSE If true, saves a graphics
slideshow to a series of files.

slideshowName

“/path_to_directory/slidesh
ow”

The header of the names
and path of the files with
saved images. The format is
"name"_number.slideshowE
xt

slideshowColorValue 10 Sets the color of the biomass
when creating and saving an
image.

colorRelative TRUE Show the colors relative to
each model, i.e. on an RGB
palette.

slideshowColorRelative TRUE As colorRelative above,
applied to the slideshow.

slideshowRate 1 The number of steps
between taking a slideshow
picture.

slideshowLayer 0 Sets the current medium
component (or biomass) to
be displayed. The user must
determine the number of
the medium or biomass
from the layout.

slideshowExt png The file extension(format)
for slideshow pictures.
Currently, “png” “bmp” and
“jpg” are supported. “png” is
recommended.

barrierColor 0xff7D7D7D (gray) Barrier color in hex.

backgroundColor 0xff000000 (black) Background color in hex.

Parameter related to the extracellular reactions model

numExRxnSubsteps 12 Number of
extracellular
reactions substeps
per biomass update
step.

Parameters related to lag phases

Parameter Unit Default value Definition or notes

simulateActivation FALSE If true, the models
are activated with

the set activation
rate.

activateRate h-1 0.001 The value of
activation rate.

Parameters related to specific modes of growth, such as serial dilutions or chemostat mode

Parameter Unit Default value Definition or notes

batchDilution FALSE Whether to perform
serial dilutions.

dilFactor Dil. factor 1e-2 If >1, dilution factor;
if <1, 1/dilution
factor.

dilTime h 12 Periodicity of serial
dilutions.

metaboliteDilutionR
ate

Fraction per hour 0 The rate of dilution
of a metabolite.

Parameters related to evolution (mutations)

Parameter Unit Default value Definition or notes

evolution FALSE If true, the
simulation will
perform mutations.

mutRate Per genome and
cycle

1e-9 Mutation rate for
reaction deletions.

addRate Per genome and
cycle

1e-9 Mutation rate for
reaction additions.

Parameters related to genome size cost

Parameter Unit Default value Definition or notes

costlyGenome FALSE Does genome size
penalize growth.

geneFractionalCost 0 How much does

 genome size
penalize growth.
The cost grows
exponentially with
genome size, with an
exponent of 2.

Additional, less often used general simulation parameters

Parameter Units Default Description

toroidalWorld FALSE If true, creates
periodic boundary
conditions.

showCycleCount TRUE If true, shows the
current number of
cycles/steps on the
console.

showCycleTime TRUE If true, shows the
time of a cycle/step
on the console.

randomSeed 0 Seed value for the
semi-random
number generator.

defaultVelocityVecto
r

cm/s (0,0,0) The default value for
the velocity vector
in the flow model. .

writeVelocityLog

 FALSE If true, writes
velocity information
to a log file.

velocityLogRate 1 How often to write
to the velocity file
(number of
simulation steps). A
value of 1 will cause
writing after every
step.

velocityLogName velocity_log.txt The name of the

velocity log file.

writeMatFile FALSE If true, writes all of
the simulation
information to a log
file.

matFileName comets_log.mat The name of the
.mat log file.

matFileRate 1 How often to write
to the .mat file
(number of
simulation steps). A
value of 1 will cause
writing after every
step. Warning:
writing to this file
every step may
result in very large
.mat file.

biomassLogFormat MATLAB The format in which
the log file will be
written. The default
is .m MATLAB file. If
the value is
COMETS, the output
is written in a space
separated file.

mediaLogFormat MATLAB The format in which
the log file will be
written. The default
is .m MATLAB file. If
the value is
COMETS, the output
is written in a space
separated file.

fluxLogFormat MATLAB The format in which
the log file will be
written. The default
is .m MATLAB file. If
the value is
COMETS, the output

is written in a space
separated file.

velocityLogFormat MATLAB The format in which
the log file will be
written. The default
is .m MATLAB file. If
the value is
COMETS, the output
is written in a space
separated file.

Model-specific, these parameters are specified in the model file

Parameter Unit Default value Definition or notes

Optimizer GUROBI,
GLPK

GUROBI The optimizer to be
used for solving the
FBA optimization.

OBJECTIVE_STYLE MAX_OBJECTIVE_M
IN_TOTAL,
MAX_OBJECTIVE

MAX_OBJECTIVE

The type of
optimization to be
used.

VMAX_VALUES mmol (gCDW)-1
(hour)-1

Same as the global
default.

Maximum flux
constant for the
Michaelis-Menten
type exchange, for
each reaction. Each
reaction can be
assigned separate
value in the model
file.

KM_VALUES mmol/cm3 Same as the global
default.

The Michaelis
constant for the
Michaelis-Menten
type exchange, for
each reaction. Each
reaction can be
assigned separate
value in the model
file.

packedDensity g/cm3 1.0 The biomass density
of densely packed
cells in the
CONVECTION 2D
model.

frictionConst Pa sec/cm2 1.0 The friction constant
in the Convection 2D
model.

elasticModulus Pa 1.0 The elastic constant
in the Convection 2D
model.

convDiffConstant cm2/s 1.0 The diffusivity
constant in the
Convection 2D
model.

convNonlinDiffZero cm2/s 1.0 The linear diffusivity
in the ConvNonlin
Diffusion 2D model.

convNonlinDiffN N/A It is a function
of
convNonlinDiffExpo
nent

1.0 The non-linear
diffusivity
coefficient in the
ConvNonlin
Diffusion 2D model.

convNonlinDiffExpon
ent

 1 The exponent in the
ConvNonlin
Diffusion 2D model.

convNonlinDiffHillN 10 The exponent in the
Hill function model
of local growth
dependent
diffusivity.

convNonlinDiffHillK N/A It is a function
of
convNonlinDiffHillN
.

0.9 The K constant in
the Hill function
model of local
growth dependent
diffusivity.

noiseVariance 0.0 The variance of the
growth noise factor.

neutralDrift FALSE The boolean switch
for the demographic
noise.

neutralDriftSigma g1/2 s-1

 The prefactor
constant for the
demographic noise.

1. Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248

(2010).

2. O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using Genome-scale Models to Predict Biological

Capabilities. Cell 161, 971–987 (2015).

3. Heirendt, L. et al. Creation and analysis of biochemical constraint-based models using the COBRA

Toolbox v.3.0. Nat. Protoc. 14, 639–702 (2019).

4. Feist, A. M. & Palsson, B. O. The biomass objective function. Current Opinion in Microbiology vol. 13

344–349 (2010).

5. Ibarra, R. U., Edwards, J. S. & Palsson, B. O. Escherichia coli K-12 undergoes adaptive evolution to

achieve in silico predicted optimal growth. Nature 420, 186–189 (2002).

6. Fong, S. S. & Palsson, B. Ø. Metabolic gene–deletion strains of Escherichia coli evolve to

computationally predicted growth phenotypes. Nat. Genet. 36, 1056–1058 (2004).

7. Segrè, D., Vitkup, D. & Church, G. M. Analysis of optimality in natural and perturbed metabolic

networks. Proc. Natl. Acad. Sci. U. S. A. 99, 15112–15117 (2002).

8. Wintermute, E. H., Lieberman, T. D. & Silver, P. A. An objective function exploiting suboptimal

solutions in metabolic networks. BMC Syst. Biol. 7, 98 (2013).

9. Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed optimal growth from

genome-scale models. Mol. Syst. Biol. 6, 390 (2010).

10. Fong, S. S. & Palsson, B. Ø. Metabolic gene–deletion strains of Escherichia coli evolve to

http://paperpile.com/b/4oq2e3/dcoa
http://paperpile.com/b/4oq2e3/dcoa
http://paperpile.com/b/4oq2e3/dcoa
http://paperpile.com/b/4oq2e3/dcoa
http://paperpile.com/b/4oq2e3/dcoa
http://paperpile.com/b/4oq2e3/dcoa
http://paperpile.com/b/4oq2e3/SXEW
http://paperpile.com/b/4oq2e3/SXEW
http://paperpile.com/b/4oq2e3/SXEW
http://paperpile.com/b/4oq2e3/SXEW
http://paperpile.com/b/4oq2e3/SXEW
http://paperpile.com/b/4oq2e3/SXEW
http://paperpile.com/b/4oq2e3/ouYfw
http://paperpile.com/b/4oq2e3/ouYfw
http://paperpile.com/b/4oq2e3/ouYfw
http://paperpile.com/b/4oq2e3/ouYfw
http://paperpile.com/b/4oq2e3/ouYfw
http://paperpile.com/b/4oq2e3/ouYfw
http://paperpile.com/b/4oq2e3/ouYfw
http://paperpile.com/b/4oq2e3/ouYfw
http://paperpile.com/b/4oq2e3/tbIkV
http://paperpile.com/b/4oq2e3/tbIkV
http://paperpile.com/b/4oq2e3/tbIkV
http://paperpile.com/b/4oq2e3/tbIkV
http://paperpile.com/b/4oq2e3/Mkg13
http://paperpile.com/b/4oq2e3/Mkg13
http://paperpile.com/b/4oq2e3/Mkg13
http://paperpile.com/b/4oq2e3/Mkg13
http://paperpile.com/b/4oq2e3/Mkg13
http://paperpile.com/b/4oq2e3/Mkg13
http://paperpile.com/b/4oq2e3/cvdUS
http://paperpile.com/b/4oq2e3/cvdUS
http://paperpile.com/b/4oq2e3/cvdUS
http://paperpile.com/b/4oq2e3/cvdUS
http://paperpile.com/b/4oq2e3/cvdUS
http://paperpile.com/b/4oq2e3/cvdUS
http://paperpile.com/b/4oq2e3/qz8vj
http://paperpile.com/b/4oq2e3/qz8vj
http://paperpile.com/b/4oq2e3/qz8vj
http://paperpile.com/b/4oq2e3/qz8vj
http://paperpile.com/b/4oq2e3/qz8vj
http://paperpile.com/b/4oq2e3/qz8vj
http://paperpile.com/b/4oq2e3/bP1I6
http://paperpile.com/b/4oq2e3/bP1I6
http://paperpile.com/b/4oq2e3/bP1I6
http://paperpile.com/b/4oq2e3/bP1I6
http://paperpile.com/b/4oq2e3/bP1I6
http://paperpile.com/b/4oq2e3/bP1I6
http://paperpile.com/b/4oq2e3/Lug44
http://paperpile.com/b/4oq2e3/Lug44
http://paperpile.com/b/4oq2e3/Lug44
http://paperpile.com/b/4oq2e3/Lug44
http://paperpile.com/b/4oq2e3/Lug44
http://paperpile.com/b/4oq2e3/Lug44
http://paperpile.com/b/4oq2e3/Lug44
http://paperpile.com/b/4oq2e3/Lug44
http://paperpile.com/b/4oq2e3/Yl1LM

computationally predicted growth phenotypes. Nat. Genet. 36, 1056–1058 (2004).

11. Mahadevan, R., Edwards, J. S. & Doyle, F. J., 3rd. Dynamic flux balance analysis of diauxic growth in

Escherichia coli. Biophys. J. 83, 1331–1340 (2002).

12. Harcombe, W. R. et al. Metabolic resource allocation in individual microbes determines ecosystem

interactions and spatial dynamics. Cell Rep. 7, 1104–1115 (2014).

13. Matsushita, M. et al. Interface growth and pattern formation in bacterial colonies. Physica A:

Statistical Mechanics and its Applications vol. 249 517–524 (1998).

14. Farrell, F. D. C., Hallatschek, O., Marenduzzo, D. & Waclaw, B. Mechanically driven growth of quasi-

two-dimensional microbial colonies. Phys. Rev. Lett. 111, 168101 (2013).

15. Tronnolone, H. et al. Diffusion-Limited Growth of Microbial Colonies. Scientific Reports vol. 8

(2018).

16. Lacasta, A. M., Cantalapiedra, I. R., Auguet, C. E., Peñaranda, A. & Ramírez-Piscina, L. Modeling of

spatiotemporal patterns in bacterial colonies. Physical Review E vol. 59 7036–7041 (1999).

17. Kozlovsky, Y., Cohen, I., Golding, I. & Ben-Jacob, E. Lubricating bacteria model for branching growth

of bacterial colonies. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59, 7025–7035

(1999).

18. Giverso, C., Verani, M. & Ciarletta, P. Branching instability in expanding bacterial colonies. Journal

of The Royal Society Interface vol. 12 20141290 (2015).

19. Vassallo, L., Hansmann, D. & Braunstein, L. A. On the growth of non-motile bacteria colonies: an

agent-based model for pattern formation. The European Physical Journal B vol. 92 (2019).

20. Ben-Jacob, E. et al. Generic modelling of cooperative growth patterns in bacterial colonies. Nature

vol. 368 46–49 (1994).

21. Henrichsen, J. Bacterial surface translocation: a survey and a classification. Bacteriological Reviews

vol. 36 478–503 (1972).

http://paperpile.com/b/4oq2e3/Yl1LM
http://paperpile.com/b/4oq2e3/Yl1LM
http://paperpile.com/b/4oq2e3/Yl1LM
http://paperpile.com/b/4oq2e3/Yl1LM
http://paperpile.com/b/4oq2e3/Yl1LM
http://paperpile.com/b/4oq2e3/1CN7G
http://paperpile.com/b/4oq2e3/1CN7G
http://paperpile.com/b/4oq2e3/1CN7G
http://paperpile.com/b/4oq2e3/1CN7G
http://paperpile.com/b/4oq2e3/1CN7G
http://paperpile.com/b/4oq2e3/1CN7G
http://paperpile.com/b/4oq2e3/x8hoG
http://paperpile.com/b/4oq2e3/x8hoG
http://paperpile.com/b/4oq2e3/x8hoG
http://paperpile.com/b/4oq2e3/x8hoG
http://paperpile.com/b/4oq2e3/x8hoG
http://paperpile.com/b/4oq2e3/x8hoG
http://paperpile.com/b/4oq2e3/x8hoG
http://paperpile.com/b/4oq2e3/x8hoG
http://paperpile.com/b/4oq2e3/lfoMg
http://paperpile.com/b/4oq2e3/lfoMg
http://paperpile.com/b/4oq2e3/lfoMg
http://paperpile.com/b/4oq2e3/lfoMg
http://paperpile.com/b/4oq2e3/lfoMg
http://paperpile.com/b/4oq2e3/lfoMg
http://paperpile.com/b/4oq2e3/bH3vp
http://paperpile.com/b/4oq2e3/bH3vp
http://paperpile.com/b/4oq2e3/bH3vp
http://paperpile.com/b/4oq2e3/bH3vp
http://paperpile.com/b/4oq2e3/bH3vp
http://paperpile.com/b/4oq2e3/bH3vp
http://paperpile.com/b/4oq2e3/jDKfj
http://paperpile.com/b/4oq2e3/jDKfj
http://paperpile.com/b/4oq2e3/jDKfj
http://paperpile.com/b/4oq2e3/jDKfj
http://paperpile.com/b/4oq2e3/jDKfj
http://paperpile.com/b/4oq2e3/jDKfj
http://paperpile.com/b/4oq2e3/3Snng
http://paperpile.com/b/4oq2e3/3Snng
http://paperpile.com/b/4oq2e3/3Snng
http://paperpile.com/b/4oq2e3/3Snng
http://paperpile.com/b/4oq2e3/aaBZQ
http://paperpile.com/b/4oq2e3/aaBZQ
http://paperpile.com/b/4oq2e3/aaBZQ
http://paperpile.com/b/4oq2e3/aaBZQ
http://paperpile.com/b/4oq2e3/aaBZQ
http://paperpile.com/b/4oq2e3/aaBZQ
http://paperpile.com/b/4oq2e3/aaBZQ
http://paperpile.com/b/4oq2e3/htKgZ
http://paperpile.com/b/4oq2e3/htKgZ
http://paperpile.com/b/4oq2e3/htKgZ
http://paperpile.com/b/4oq2e3/htKgZ
http://paperpile.com/b/4oq2e3/x87vS
http://paperpile.com/b/4oq2e3/x87vS
http://paperpile.com/b/4oq2e3/x87vS
http://paperpile.com/b/4oq2e3/x87vS
http://paperpile.com/b/4oq2e3/SevHP
http://paperpile.com/b/4oq2e3/SevHP
http://paperpile.com/b/4oq2e3/SevHP
http://paperpile.com/b/4oq2e3/SevHP
http://paperpile.com/b/4oq2e3/SevHP
http://paperpile.com/b/4oq2e3/SevHP
http://paperpile.com/b/4oq2e3/zom0M
http://paperpile.com/b/4oq2e3/zom0M
http://paperpile.com/b/4oq2e3/zom0M
http://paperpile.com/b/4oq2e3/zom0M

22. Müller, J. & Van Saarloos, W. Morphological instability and dynamics of fronts in bacterial growth

models with nonlinear diffusion. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 061111 (2002).

23. Dornic, I., Chaté, H. & Muñoz, M. A. Integration of Langevin equations with multiplicative noise and

the viability of field theories for absorbing phase transitions. Phys. Rev. Lett. 94, 100601 (2005).

24. William H. Press. Numerical Recipes in C: The Art of Scientific Computing. (Cambridge University

Press, 1992).

25. LeVeque, R. J. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-

State and Time-Dependent Problems. (SIAM, 2007).

http://paperpile.com/b/4oq2e3/epXpF
http://paperpile.com/b/4oq2e3/epXpF
http://paperpile.com/b/4oq2e3/epXpF
http://paperpile.com/b/4oq2e3/epXpF
http://paperpile.com/b/4oq2e3/epXpF
http://paperpile.com/b/4oq2e3/epXpF
http://paperpile.com/b/4oq2e3/47J5A
http://paperpile.com/b/4oq2e3/47J5A
http://paperpile.com/b/4oq2e3/47J5A
http://paperpile.com/b/4oq2e3/47J5A
http://paperpile.com/b/4oq2e3/47J5A
http://paperpile.com/b/4oq2e3/47J5A
http://paperpile.com/b/4oq2e3/FEKeO
http://paperpile.com/b/4oq2e3/FEKeO
http://paperpile.com/b/4oq2e3/FEKeO
http://paperpile.com/b/4oq2e3/FEKeO
http://paperpile.com/b/4oq2e3/BrIml
http://paperpile.com/b/4oq2e3/BrIml
http://paperpile.com/b/4oq2e3/BrIml
http://paperpile.com/b/4oq2e3/BrIml

	A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS)
	SpringerNature_NatProtocol_593_ESM.pdf
	A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS)

