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Supplementary Discussion 1: Detailed information on the development 

of the protocol 

Flux Balance Analysis. Flux Balance Analysis (FBA) is a constraint-based computational method used to 
predict the function or phenotype of an organism by simulating its metabolism. Although it has been 
described extensively elsewhere1,2, we give here a brief overview of the basic principles of FBA.  
 

The network of metabolic chemical reactions is represented by the stoichiometric matrix S. In this matrix, 
rows represent metabolites and columns represent reactions; Sij represents the moles of metabolite i 
consumed (Sij<0) or produced (Sij>0) by reaction j. FBA, like many other stoichiometry-based models of 
metabolism, relies on the assumption that cellular metabolism is at steady state. This assumption should 
be thought of as pertaining to a population of cells over a certain period of time, such that, on average, 
the concentrations of metabolites inside cellular biomass do not change in time. This steady state 
assumption imposes the following linear constraints on the fluxes through the metabolic reactions: 

  
where ν is the vector of reaction fluxes, whose i-th component νi is the flux through reaction i (typically in 
units of mmol/grDW*h). Additionally, a lower (lb) and upper (ub) bounds can be set to constrain each flux 
between a minimal and a maximal value: 

      
These bounds may be used to define a reaction as irreversible by setting: 

 
In the case of “exchange reactions” (reactions representing the availability of nutrients from the 
environment), we use these bounds as tuning knobs to define the maximal uptake rate of the 
corresponding nutrients. The bulk of the metabolic fluxes are left virtually unbounded. Thus, in practice, 
the main constraint to internal metabolic fluxes arises from the requirement of mass balance, defined by 
the stoichiometric matrix and ultimately by the structure of the metabolic network, and by the boundary 
conditions of nutrient availability and thermodynamic infeasibility. Note that, as described later, the 
nutrient availability flux bounds will be dealt with in a substantially different way in dynamic FBA and in 
COMETS. 
 

The maximal uptake rate for the exchange reactions is typically modeled with the Michaelis-Menten 
kinetics:  

      

where   is the nutrient concentration, Vmaxis the maximum rate and  KM is the Michaelis 
constant.    
 

Mathematically, these constraints define a convex polytope, i.e. a volume of permitted fluxes in high 
dimensional space, with the number of dimensions defined by the number of reactions, i.e. the number 
of columns of the stoichiometric matrix S. Note that the reconstruction of a metabolic network from an 
organism's genome (described in detail elsewhere3) involves substantially more complicated steps, 
including a detailed mapping between genes and reactions. These steps are not described here, but are 
an important component for the usage of FBA methods towards making accurate predictions.  
 

https://paperpile.com/c/4oq2e3/dcoa+SXEW
https://paperpile.com/c/4oq2e3/ouYfw


To predict a specific set of fluxes for a given metabolic network, FBA requires an additional step, in 
which the feasible space is searched for a point (or set of points) that maximizes (or minimizes) a given 
objective function, represented in the form of a linear combination of the flux variables. Usually, this 
objective function is the production of a set of molecules (building blocks, energy and redox currency) 
that metabolism needs to provide in precise proportions as required by other cellular processes 
(synthesis of macromolecules, membranes, DNA replication, transcription, etc.) to generate new 
biomass4. The use of linear objective functions makes it possible to solve this mathematical problem 
through well-established efficient linear programming algorithms, available through a number of 
libraries. A typical FBA optimization for a genome-scale model, on a standard laptop computer, takes on 
the order of a few milliseconds. Biologically, the search for a set of fluxes that optimizes a given 
objective implies the hypothesis that an organism has evolved to be able to regulate its metabolic fluxes 
to approach that optimum under a set of environmental conditions. In other words, the model assumes 
an “optimal regulation”. This assumption is partly justified by evolution5,6, but it does not necessarily 
hold in all conditions5,7–9. COMETS can accommodate arbitrary objective functions, in addition to 
maximization of biomass production. Moreover, it supports multiple objectives optimized 5,10 

iteratively5,10, including the minimization of the sum of the absolute values of fluxes (also known as 
parsimonious FBA)9. 
 

Dynamic Flux Balance Analysis (dFBA). Dynamic Flux Balance Analysis11 is an iterative extension of FBA 
that explicitly includes the dynamics of the organisms as they grow, and the effects of this growth in the 
environment. dFBA produces piecewise-linear approximations of the microbial growth curve (i.e., 
biomass as a function of time), and of the environmental abundance of metabolites, that can change 
due to external factors, or through uptake/secretion fluxes. Notably, in dFBA, while extracellular 
metabolites can dynamically change, intracellular ones are still assumed to be at steady state (through 
fast equilibration). In COMETS, for each microbial species , we implement dFBA by numerically solving 
its biomass equation:  

 
where Bα is the biomass of species α and να

growth is the growth rate, as computed through FBA. Effectively, 
upon fixing a finite Δt, a change of biomass for each species in the next time step is computed as ΔBα=να

growth 
Bα Δt. The dynamics of each external metabolite is governed by the equation:  

   
where Qi is the abundance of external metabolite i and να

i is the exchange flux of metabolite i in species α. 
Similar to the biomass equation, the changes in extracellular metabolites are computed based on FBA-
inferred fluxes and the finite time interval. 
   
At the beginning of the simulation, the starting molecular composition of the environment is initialized, 
based on initial conditions set by the user. At each iteration, the program estimates each model’s uptake 
bounds based on the external concentration of nutrients, and solves each model’s FBA, obtaining an 
estimate of the growth rate and all other fluxes, including uptake and secretion. Because models are 
optimized sequentially, when a nutrient is limiting, if there are many models present in the simulated 
layout, the total amount of a given nutrient scheduled to be uptaken in a single time iterationof a given 
nutrient will likely may exceed the actual amount present in the system. This is due to the fact that the 
calculation of the nutrient uptake rate in each model separately takes into account its total 
concentration. If several models are present, several uptake rates will be calculated for the same 
nutrient.its concentration in presence of multiple populations (models). To prevent this artifact, 

https://paperpile.com/c/4oq2e3/tbIkV
https://paperpile.com/c/4oq2e3/Mkg13+cvdUS
https://paperpile.com/c/4oq2e3/qz8vj+bP1I6+Mkg13+Lug44
https://paperpile.com/c/4oq2e3/Mkg13+Yl1LM
https://paperpile.com/c/4oq2e3/Mkg13+Yl1LM
https://paperpile.com/c/4oq2e3/Lug44
https://paperpile.com/c/4oq2e3/1CN7G


COMETS checks at every iteration whether the total uptake, the sum of uptakes for a given nutrient 
from all models, is higher than the total amount presentconcentration for anythe said nutrients. If this 
happens, if there is no sufficient amount of a nutrient to be uptaken according to the total uptake rate, 
COMETS performs a second optimization, this time adjusting the uptake of all models to be proportional 
to the uptakes computed in the first optimization without exceeding nutrient concentration in the 
environment. The resulting fluxes are used as inputs in the above equations to compute the changes in 
biomass and extracellular metabolites. One of the important outcomes of this process is the fact that 
different organisms may compete for common resources and/or exchange metabolites as an outcome 
of their own objective function. Microbe-environment and microbe-microbe interactions are emergent 
properties of the physiology of each species12.  
 

As mentioned above, a key aspect of dFBA is that it requires a mapping between the external nutrient 
concentration and the maximal uptake rate for each metabolite in each organism. COMETS includes 
three possible choices for such mapping functions. Bounds can be either a linear function of the 
concentration, a Monod (or Michaelis-Menten) function, or a pseudo-Monod uptake type (i.e., linear 
until a given threshold, then constant). The type of uptake can be specified in the parameter 
exchangeStyle. A special case of “nutrient” uptake is light absorption, which is calculated from 
absorption coefficients using the Beer-Lambert law.  
 

Metabolite control. All simulations begin with an initial metabolite environment, which may vary across 
space. Metabolites can also be set to change in pre-defined ways during the simulation. A metabolite 
can be assigned the static property, which causes it to begin each time step at the defined value. 
Second, the refresh property can be used to add (or remove) a constant amount of metabolite to a 
spatial location per-hour, divided equally among the time steps. Third, metabolite abundances can be 
set to vary periodically using defined wave functions. Finally, all metabolites can be set to dilute 
proportionally, using the parameter setting metaboliteDilutionRate. 
 

Spatial structure and dynamics. The classical implementation of dFBA described above (which can be 
implemented in COMETS) corresponds to a well-mixed system, in which all microbes and metabolites 
are uniformly distributed and have access to each other in proportion to their concentration. In addition 
to this dynamics in time, COMETS is able to take into account the spatial structure of microbial colonies 
and communities, simulating arbitrary two-dimensional spatial structures (a 3D version is in principle 
available, but has not been thoroughly tested yet). Spatial structure in COMETS is implemented as a 2D 
grid of cubic “boxes” with a given dimension and volume. Inside each of these “boxes”, a well-mixed 
scenario is assumed. The biomass of different species and the environmental metabolites can propagate 
from a given box to neighboring boxes based on physics laws of convection-diffusion, as described in 
detail below. 
 

Biomass propagation. The core of the COMETS method is the simulation of the propagation of the 
biomass present in the system. The simulations are performed by numerically solving the partial-
differential equations that govern the dynamics of the system 13–18. The dynamical variable of biomass 
(formally biomass density) is spatially continuous. Although the natural unit of biomass is a single cell of 
an organism, we implemented the biomass dynamics as one of a locally averaged continuous quantity. 
The reason for this choice is to be able to simulate macroscopic systems on the order of centimeters and 
larger. An individual cell-based methodology 19,20 would significantly hinder the extent ofin both size and 
time of the simulations. 
 

https://paperpile.com/c/4oq2e3/x8hoG
https://paperpile.com/c/4oq2e3/lfoMg+bH3vp+jDKfj+3Snng+aaBZQ+htKgZ
https://paperpile.com/c/4oq2e3/x87vS+SevHP


The partial differential equation for biomass propagation written in the general form is: 

 
Here Bα=Bα( ,t) is the biomass of species α at spatial position and at time t. The operator is the vector 
differential operator, Dα=Dα( ,t) is the diffusivity of species α, and it can vary in space and time explicitly, 
or as a function of the local biomass. Qm=Qm( ,t) is the local nutrient/metabolite content (density). α=
α(Bα; ,t) is the local velocity of the bulk biomass of the corresponding species. The biomass velocity can be 
a function of the biomass (as a mechanistic model) or explicitly a function of the time and spatial position. 
Finally, fα(Bα,Qm) is the biomass growth/death term. This term has the same form as the corresponding one 
for dFBA.  
 

The temporal dynamics of the biomass at a spatial point is governed by the three terms on the right-hand 
side of the equation. The first term is a diffusive one, and it models the free movement of the individual 
bacterial cells. The diffusivity may be an explicit function of time and/or spatial position. In this case the 
local diffusivity depends on the external conditions, such as material in the region where the biomass is 
propagating, etc. The diffusivity may also be a function of the biomass, modeling the cooperativity in the 
propagation of the bacterial colony. The second term on the right-hand side of the equation is the 
advective one and models the bulk motion of the biomass with a local velocity α u. The local velocity may 
explicitly depend on the spatial point and time. This would be a model of biomass motion in external flow. 
The biomass velocity however may be a function of the biomass itself given via a mechanistic model, such 
as a model of propagation by mutual mechanical pushing of the cells. By combining these terms for 
biomass propagation, we can model a wide range of modes of bacterial motility21. Setting the diffusivity 
to a constant and the convective term to zero, we can model, for example, simple diffusive swimming and 
twitching21. Having the diffusivity be a function of the biomass itself, we model the collective motion of 
the bacteria. The advective term models the sliding of the colony due to mechanical pushing of the cells 
during the colony expansion21.  
 

In COMETS we have implemented the mechanistic model of biomass propagation by cellular pushing 14. 
As individual cells grow and divide, the local density of the biomass is increased. At the point when the 
density reaches the value of densely packing, the cells are in mechanical contact, and a field of pressure 
develops due to the mechanical interaction, i.e. pushing of neighboring cells. The local velocity of biomass 
Bα is given by the gradient of the local pressure developed due to cells pushing on each other:  

  
where μα is a friction constant and P is the pressure field given by: 

 
where ρ is the local density of the total biomass, Eα is the elastic constant for species α and ρ0 is the density 
of the biomass at closed packing, i.e. when the bacterial cells are touching, but not pushing each other. If 
the density ρ<ρ0, the pressure field is equal to zero.  
     
Another model for propagation of bacterial biomass that we implemented in COMETS simulates the 
cooperative behavior in a dense bacterial colony, based on the fact that certain bacterial species secrete 
a lubricant17,22 that changes the local mobility of the bacterial cells. This secretion is typically dependent 
on the local density of cells. In COMETS we simulate this phenomenon by modeling the biomass diffusivity 
of species  as: 

 
where Dα

0 is a general linear term, and Dα
kρk depends on the local biomass density to the power of k. 

 

https://paperpile.com/c/4oq2e3/zom0M
https://paperpile.com/c/4oq2e3/zom0M
https://paperpile.com/c/4oq2e3/zom0M
https://paperpile.com/c/4oq2e3/bH3vp
https://paperpile.com/c/4oq2e3/epXpF+aaBZQ


In addition to the dependence of Dα on the biomass density, the diffusivity of the biomass may optionally 
be restricted to the parts of the biomass field that are actively growing. We implement this feature by 
multiplying Dα with the Hill function: 

      
where ΔBα is the local biomass change due to growth in a single discrete time step, and n and K are the 
Hill function parameters. 
 

The parameters of the models for the biomass propagation can be set separately for each model in a 
COMETS simulation. The biomass propagation parameters are independent of the metabolic properties 
of a model, and can be set separately in the model input file. This way, one can include in a simulation 
either (i) species that are metabolically different, but have similar or identical biomass propagation 
properties, or (ii) species that are metabolically identical, but differ in their physical properties, or (iii) 
different strains with completely identical metabolic and physical properties, as we illustrate in Procedure 
7. 
 

The last term in the equation for biomass propagation models the local growth (and/or death) of the 
biomass. Typically, this term is proportional to the biomass, and a pre-factor given by the growth rate of 
the biomass. In COMETS, the growth rate of the local biomass is determined by the metabolic activity in 
the model, and is a function of the local quantity (formally concentration) of the external 
nutrients/metabolites. In COMETS, we calculate the growth rate utilizing the Flux Balance Analysis 
methodology (as described above). The local growth rate can also be augmented by a death rate that 
removes a fraction of the biomass at each time step. 
    
Nutrient propagation. In addition to the biomass propagation, COMETS simulates the spatio-temporal 
dynamics of the metabolites/nutrients that are taken up and/or secreted by the organisms. The 
dynamics of the external metabolite  is determined by their uptake and secretion by the organisms, as 
well as their convection over the spatial layout:      

          
Here the diffusivity of the metabolites may also be locally defined, or/and can depend on the local 
biomass content. 
 

Barriers. Propagation of biomass or nutrients can be prevented into certain lattice locations by the 
placement of barriers. Barriers act as reflective boundaries for diffusion and biomass motion 
calculations. In the python toolbox, a helper function (“grow_rocks”, see Procedure 6) is included to 
create a common clustered barrier, which works as follows: grow_rocks first picks n random locations 
within the allowed range. Then, mean_size * n - n additional points are added to these seed locations. 
For each new point, one random location out of the set of all possible unoccupied locations next to 
occupied locations are chosen. If an unoccupied location is adjacent to >1 occupied location, its chance 
of being chosen is increased by 100% for each occupied adjacent location. Only lattice points directly to 
the NSEW of occupied locations are considered. This process is repeated until all new points are 
assigned.  
   
Demographic and growth noise. Two types of stochastic noise are implemented in COMETS. Growth 
rate noise consists of a simple broadening of the growth rate with a Gaussian noise term. Instead of 
implementing the growth rate as calculated by the FBA algorithm, it is sampled from a Gaussian 
distribution centered at the FBA obtained growth rate. The user should be aware that this broadening is 



meant to be very small, since it may lead to a growth rate that is temporarily higher than the FBA 
maximum. While this noise will average out in a sufficiently long simulation run the user may want to 
verify that the variation due to this noise is indeed small in each simulation step. When applying this 
type of noise the user should also be aware that the uptake of nutrient is proportional to the biomass, 
and it will vary proportionally to the applied noise.  
 

Demographic (shot) noise is given as a stochastic term in: 

     
where Bν is the biomass of species ν, η is white noise and σ is a parameter that determines the 
magnitude of the noise. The demographic noise is implemented in COMETS according to the method 
described in 23. 
 

The change of the biomass from the growth term is first calculated, then it is resampled in two steps 
according to the procedure in23. First, we sample the shape parameter of the Gamma distribution from 
the Poisson distribution:  

     

where: 

. 
Then, with the sampled α, we sample from the Gamma distribution: 

                                    
where the scale parameter β=1 and Γ(α) is the Gamma function. 
The new biomass is given by: 

.  
 

Extracellular reactions. COMETS includes the capability to use kinetic rate laws to simulate two types of 
reactions involving extracellular media components. The first are elementary reactions of arbitrary order 
with any number of reactants or products, of the form  

 
for reactants M and products P, with respective stoichiometries x and y, and with a reaction rate  

 
given the rate constant k. The second type are enzyme-catalyzed reactions with a single substrate and 
any number of products, of the form  

      
where the stoichiometry of the substrate S is always assumed to be 1. The reaction rate is determined 
by the Michaelis-Menten equation 

     
that accounts for the concentrations of the enzyme Ε and the substrate S the turnover rate kcat, and the 
half-saturation concentration KM. 
 

https://paperpile.com/c/4oq2e3/47J5A
https://paperpile.com/c/4oq2e3/47J5A


Changes in metabolite concentrations over the course of a single simulation timestep are calculated by 
converting the set of all extracellular reactions into a system of ordinary differential equations, then 
approximating the solution with the classical Runge-Kutta integrator from the Apache Commons Math 
library (http://commons.apache.org/). The process of updating metabolite concentrations by applying 
the effects of extracellular reactions happens once during each simulation timestep, after metabolites 
have been updated by the dFBA process and before diffusion occurs. 
 

Random mutation. In addition to ecological dynamics, COMETS also has the capability of mutating 
species during the simulation, which results in the capability of simulating evolutionary dynamics. 
Mutations occur during growth: at each iteration and for each species α, COMETS first computes the 
number of new individual cells arising in the previous time interval Δt as  

  
where CS is the size of a single cell (in grams of dry weight, specified by the parameter cellSize). Given 
the total population growth NG and mutation rate μ, COMETS stochastically samples a number from a 
Poisson distribution with mean NGμ (or a binomial if populations contain less than 10 cell divisions). The 
resulting mutants - new stoichiometric models with modified stoichiometry based on a set of rules (see 
below) - are then placed randomly in cells containing biomass of the ancestor, with a probability per cell 
of the simulation grid proportional to the fraction of NG in that cell. The new mutant populations are also 
mutable with the same mutation rates as the ancestor, allowing the accumulation of mutations in time.  
 

Two types of mutations are implemented in COMETS, reaction knock-out and reaction knock-in. The 
knock-out rate μKO is set using the parameter mutRate, and represents the knock-out rate per generation 
and per reaction. Thus, μ=RμKO, where R is the number of reactions of a given model. In contrast to 
knock-outs, the knock-in rate is computed per generation and is set up using the addRate parameter. In 
order to simulate knock-in mutations (i.e. reaction additions) models must be previously prepared by 
adding all the reactions that we want to be potential additions to the model or models, with both upper 
and lower bounds equal to 0. These reactions will initially be unavailable to the optimizer, and become 
available only once “added”, i.e. once their upper bound is set to 1000 by COMETS during the 
simulation. Future plans include implementing mutations in genes, that would propagate to reactions 
using gene-to-reaction logical relationships.  
 

Numerical integration of spatio-temporal equations. The method used for numerical integration of the 
partial differential equations in COMETS depends on the type of equation, i.e. the type of model of 
spatio-temporal propagation, that is being solved. The three different models for propagation of 
biomass, the simple diffusion, propagation by pushing and non-linear cooperative diffusion, cannot be 
optimally solved by a single method.  
 

For the simple (linear) diffusion model of biomass propagation the user can choose between two 
implemented numerical methods for its solution. One is using an alternating direction implicit (ADI) 
scheme with a central difference formulation12 and the other is an 8-point integration scheme. The 
other two models of biomass propagation, the model of convection (pushing) and the non-linear 
diffusion, due to the presence of the nonlinear terms, are solved by implementing the predictor-
corrector Adams-Bashford-Moulton scheme24,25. The diffusion of the media is solved by the standard 
implicit method, the same as for the linear diffusion of the biomass. 
 

http://commons.apache.org/
https://paperpile.com/c/4oq2e3/x8hoG
https://paperpile.com/c/4oq2e3/FEKeO
https://paperpile.com/c/4oq2e3/BrIml


Supplementary Discussion 2: Software architecture and the basics of 

using COMETS 

Software architecture of COMETS 

Core architecture 

The core of COMETS is written in Java and performs its main functionalities: dynamic FBA, propagation 

of biomass and media in time and space, extracellular reactions or evolution.  

 

The code is organized in several Java packages, each containing several classes. The core of the code is in 

the following packages:  

 

comets: This package contains the top-most super-classes and interfaces. This organization of the 

superclasses was done with a future development in mind, including the possibility of modules that 

compute growth with algorithms other than FBA.  

 

fba: This package contains the core of the program, including most of the data structure as well as the 

run methods that perform the core procedures of the simulation. Here are most of the FBA specific 

subclasses of the superclasses found in the comets package. 

 

ui: This package contains the classes related to the graphical user interface.  

 

util: The util package contains general mathematical utilities, independent of the FBA methodology, such 

as several PDE solvers.   

 

The Java core of the FBA methodology in COMETS is structured in four main classes, organized 

hierarchically: 

 

Model: Instances of this class are metabolic models which are optimized using FBA in the simulations. 

This class also has a method to mutate models, i.e. add or remove reactions, used for evolutionary 

simulations.  

 

Cell: The spatial structure in COMETS is structured as a grid (either 2 or 3-dimensional). The cell class 

represents what we refer to earlier as a “box”, i.e.  a single location on this grid, with defined 

dimensions. Note that this cell should not be confused with a biological cell. A cell class contains models 

and media, whose biomasses and concentration are updated in each iteration of the dynamic FBA 

simulation. This class also performs the extracellular reactions, if present.  

 

World: The world contains all the cells (i.e. boxes, see cell class above) with their models and media. 

After each iteration, this class performs the computations necessary to propagate biomass and media 



between cells. In evolutionary simulations, it also decides stochastically which models mutate and in 

which cells. 

  

Parameters: This class contains all the necessary parameters for running a simulation. These 

parameters, their units, and default (or alternative) values are listed in the Table in Appendix 2. 

 

Comets: This is the main class of COMETS. It integrates all of the above, runs a simulation and produces 

the output.  

 

The software contains some additional “helper” classes that deal with file loading or optimizers used by 

the simulation. The central class that does the FBA optimization is the abstract class FBAOptimizer, 

which has  two subclasses, FBAOptimizerGurobi and FBAOptimizerGLPK. 

The basics of COMETS using the MATLAB toolbox 

The COMETS MATLAB Toolbox is a collection of classes and functions intended to facilitate the processes 

involved in creating layouts for simulations, and includes utilities to execute COMETS within scripts from 

the command line and to parse output files. Similarly to the Python Toolbox’s use of COBRAPy, the 

MATLAB Toolbox uses metabolic models in the format of the COBRA Toolbox for MATLAB3.  

 

A brief overview of the most important components of the COMETS MATLAB Toolbox follows. For more 

in-depth documentation, see http://segrelab.github.io/comets-toolbox/ and 

https://segrelab.github.io/comets-manualhttps://comets-manual.readthedocs.io.  

Primary Tasks 

Manipulating metabolic models: The MATLAB Toolbox uses stoichiometric metabolic models in the 

format of the popular COBRA Toolbox for MATLAB3, allowing users familiar with COBRA to quickly get up 

to speed, and allowing us to begin from model source files in an already wide-spread format. Because 

COBRA is not intended to support dynamic Flux Balance Analysis, we have added fields to the model 

structure that capture temporal behaviors: the setBiomassRxn() function can be used to specify a 

reaction that determines the growth rate, and the setKm() and setVmax() functions allow individual 

uptake reactions to be given a rate that is dependent on metabolite concentrations in a Michaelis-

Menten-like manner. 

 

Testing if COMETS is functional: The command testComets() will check, if COMETS related 

environmental variables were set properly, and if COMETS can be called from Matlab.   

 

Creating layouts: A “layout” is the structure which represents the simulated world in a COMETS analysis, 

containing sets of metabolic models with individual biomasses, as well as metabolites, across the space 

of a 2-dimensional grid. A layout object contains a CometsParams object which can be saved and loaded 

https://paperpile.com/c/4oq2e3/ouYfw
http://segrelab.github.io/comets-toolbox/
https://comets-manual.readthedocs.io/
https://paperpile.com/c/4oq2e3/ouYfw


in order to conveniently ensure that all simulations are performed with a user’s preferred set of 

simulation parameters and default values. The layout also contains instructions for the addition or 

removal of media over the course of the simulation, the diffusion properties for each organism and 

metabolite, the kinetic parameters of extracellular reactions (such as decay or enzymatic degradation), 

and the locations of “barrier” spaces which block diffusion. Utility functions exist to automate the 

placement of some layout elements, for example placing bacterial colonies at equidistant points or 

applying barrier spaces at the edges of the grid in order to create a circular plate. 

 

Creating COMETS inputs and executing simulations: The formats of the text files required by COMETS for 

models and layouts are not amenable to editing by hand, as doing so requires the user to track the 

indexes of multiple elements in several lists and refer to the documentation for the details of each field. 

The COMETS MATLAB Toolbox provides scripts to generate these files so that users no longer have to 

concern themselves with the contents of these files, and can save input files sets using the 

createCometsFiles() command or directly execute a simulation using a layout object with the 

runComets() command.  

 

Handling COMETS outputs: The various log files generated by COMETS for biomass, metabolite 

concentrations, and fluxes can be loaded into MATLAB tables for easier filtering and analysis through the 

functions parseBiomassLog(), parseMediaLog(), and parseFluxLog(). Utility scripts are provided which 

make it simple to generate plots of these measurements over time with the functions 

plotBiomassTimecourse() and plotMediaTimecourse(). 

Classes and Data Structures 

CometsLayout: The main class which encapsulates all information involved in a single COMETS 

simulation by containing media contents, the list of COBRA models, spatial information, and a single 

CometsParams object. Contents of the layout should be manipulated by using the methods of the 

CometsLayout class instead of being directly modified when possible, for example by editing initial 

media through setMedia() or adding metabolic models through addModel(). 

 

CometsParams: A class to contain the parameters for global simulation parameters as well as model-

level default values.   

File I/O 

createCometsFiles(cometsLayout, [directory, layoutFileName, separatePamsFiles]): Creates the COMETS 

script, layout, and model files. If separateParmasFiles is true, it creates separate files to contain the 

global and package parameters. Otherwise, all parameters are included in the body of the layout file. 

 

parseBiomassLog(fileName): Processes a MATLAB-format biomass log from a COMETS simulation. 

Returns a table with the following columns:  

○ t: Timestep. 



○ X: X coordinate. 

○ Y: Y coordinate. 

○ Z: Z coordinate. Excluded in 2D simulations. 

○ model: ID number of the model. Arranged as in the layout file, starting with 0. 

○ biomass: biomass value in grams. 

 

parseFluxLog(fileName): Processes a MATLAB-format reaction flux log from a COMETS simulation. 

Returns a table with the following columns:  

○ t: Timestep. 

○ X: X coordinate. 

○ Y: Y coordinate. 

○ Z: Z coordinate. Excluded in 2D simulations. 

○ model: ID number of the model. Arranged as in the layout file, starting with 0. 

○ rxn: ID number of the reaction. Arranged as in the metabolic model, starting with 0. 

○ flux: Flux through the reaction. 

 

parseMediaLog(fileName, [metNames]): Processes a MATLAB-format media log from a COMETS 

simulation. If a cell array is provided as metNames, only records for the corresponding metabolites will 

be loaded. Returns a table with the following columns:  

○ t: Timestep. 

○ X: X coordinate. 

○ Y: Y coordinate. 

○ Z: Z coordinate. Excluded in 2D simulations. 

○ met: ID number of the metabolite. Arranged as in the layout file, starting with 0. 

○ amt: Concentration of the metabolite in millimoles. 

○ metname: Name of the metabolite. 

Standard Workflow 

createLayout({cobraModels}): Initialize a COMETS layout with default properties as stored in the 

CometsParams class, and add any metabolic models provided as arguments as though invoking 

CometsLayout.addModel(). 

 

addModel(cometsLayout, cobraModel): Attaches the given model to the layout, and adds any of the 

model’s exchange metabolites to the layout’s list of media components. 

 

setMedia(cometsLayout,{metaboliteNames},concentrations): Set the initial media concentrations for 

every space in the simulation. To alter the initial media in an individual grid cell, use the method 

setInitialMediaInCell() instead. 

 

setInitialPop(cometsLayout, [format, amount, resize]): Sets the initial population for each metabolic 

model in the given cometsLayout, arranged according to the format parameter, to the value or values 



provided in the amount parameter in grams. If resize is not false, the dimensions of the cometsLayout 

will be adjusted as well. Format may be one of two options: 

○ ‘Colonies’ (default): Up to four evenly spaced colonies will be created, one for each 

model in the cometsLayout. Default dimensions 100 by 100 grid cells.    

○ ‘1x1’: Biomass for all models will be placed in the center grid cell. Default dimensions 1 

by 1 grid cell. 

 

RunComets(cometsLayout, [directory]): Creates layout and model files in the given directory (defaulting 

to the current working directory) and executes a simulation by invoking COMETS through the command 

line. 

 

The basics of COMETS using the Python Toolbox 

We will first walk through the basic functionalities of COMETS using the Python Toolbox, and more 

specific examples of usage will be provided in the next sections. Once cometspy has been installed, a 

user can implement this and all other python protocols in one of two ways: 1) The user can copy the 

code into a python script and run it. 2) We have also provided the protocols in jupyter notebook format.  

To use these included files, start the jupyter notebook by typing the following command line: 

jupyter notebook 

In Windows this is best done by going to the start menu, and running "Anaconda Powershell Prompt". 

The above command can be run from the Anaconda Powershell. 

This will launch a browser tab. On this tab, load the corresponding protocol through file-open and 

finding the [name of protocol].ipynb file (for example, chemostat.ipynb). To  run each  jupyter notebook 

click on the kernel tab and then click  Restart & Run All. Warning: for some protocols, this may take from 

five minutes to several hours. 

Create of the COMETS input files 

1. Import the python comets toolbox, the cobra toolbox and the cobra.test tools. 

import cobra 
import cobra.test 
import cometspy as c 

2. Load an existing model using COBRAPy. Here, we use the custom function 

cobra.test.create_test_model() from the COBRAPy toolbox to load the E. coli model.  



# Load a textbook example model using the COBRAPy toolbox  
test_model = cobra.test.create_test_model('textbook') 

3. Use the loaded COBRA model to build a COMETS model class, which allows us to change 

COMETS-specific model parameters, such as initial population sizes. 

# Use the above model to create a COMETS model and open exchanges 
test_model = c.model(test_model) 

test_model.open_exchanges() 

 

# Change comets specific parameters, e.g. the initial biomass of the model 
test_model.initial_pop = [0, 0, 1e-7] 

4. Use  the params class to generate a list (i.e. a python dict object) containing the default 

parameter values.  

# Create a parameters object with default values  
my_params = c.params() 

 

5. Change the parameter values as desired 

 

# Change the parameter "maxCycles" corresponding to the number of iterations in our simulation 
my_params.set_param('maxCycles', 100) 

 

6. Check which other parameters are available and their current value. 

 

# See available parameters and their values 

my_params.show_params()  

 

7. Use the layout class to generate a layout with the previously prepared model as input. Then, add 

minimal media components. 

 

my_layout = c.layout(test_model)  
my_layout.set_specific_metabolite('glc__D_e', 0.011) 

my_layout.set_specific_metabolite('o2_e',1000); 

my_layout.set_specific_metabolite('nh4_e',1000); 

my_layout.set_specific_metabolite('pi_e',1000); 

my_layout.set_specific_metabolite('h2o_e',1000); 

my_layout.set_specific_metabolite('h_e',1000); 

 

 

8. Visualize the media composition and relevant COMETS parameters (diffusion constants, “static” 

and “refresh” values), which is stored as a pandas dataframe: 

 



My_layout.media # this shows a pandas data.frame 
 

Run the COMETS simulation 

9. Define the comets object by passing the previously created layout and a parameters. 

  

my_simulation = c.comets(my_layout, my_params) 

10. Run the simulation. (Note that in this example, there will be no growth as we did not define a 

media allowing for it, e.g. the carbon source): 

my_simulation.run() 

 

11. Access the output of the COMETS simulation run 
  
print(my_simulation.run_output) # this shows initialization and biomasses at each time step. This also 
shows a Java stack trace if COMETS had an internal error 

12. Access the errors of the COMETS simulation run  

print(my_simulation.run_errors) # should be empty if everything worked 

 

The results of the successful simulation are stored in several fields in the comets object, depending on 

whether the parameters writeTotalBiomasslog, writeBiomassLog, writeFluxLog and writeMediaLog were 

set to true. 

● The field total_biomass stores the total biomass (summed up over all coordinates) for each 

timepoint and species. 

● The field biomass stores detailed biomass values for each timepoint, coordinate and species. 

● The field media stores the composition of the media at each timepoint. 

● The field fluxes stores the metabolic fluxes for each species, coordinate and timepoint. 

Additionally, specific comets models will have additional output fields; for instance, specificMedia will 

contain the concentration of specific media components if set up. Similarly, if we run a simulation with 

evolution, the field genotypes will store information about each species such as its ancestor and which 

mutation it suffered. 

All of the output files are stored as pandas dataframes which can be further analyzed or plotted using 

standard Python tools. 

 

 



The basics of COMETS using the command line 

 

COMETS is a Java application and is invoked by the following commands, typically packaged in a script 

file comets_scr. In Windows this file will typically have a .bat extension, comets_scr.bat. 

In Windows, this file will contain the line: 

 

java -classpath 

"%COMETS_HOME%/lib/colt/lib/colt.jar";"%COMETS_HOME%/lib/colt/lib/concurrent.jar";"%COMETS_H

OME%/lib/jdistlib-0.4.5-bin.jar";"%COMETS_HOME%/lib/commons-lang3-3.9/commons-lang3-3.9-

sources.jar";"%COMETS_HOME%/lib/commons-lang3-3.9/commons-lang3-

3.9.jar";"%COMETS_HOME%/lib/commons-rng-1.0/commons-rng-simple-

1.0.jar";"%COMETS_HOME%/lib/commons-rng-1.0/commons-rng-sampling-

1.0.jar";"%COMETS_HOME%/lib/commons-rng-1.0/commons-rng-jmh-

1.0.jar";"%COMETS_HOME%/lib/commons-rng-1.0/commons-rng-core-

1.0.jar";"%COMETS_HOME%/lib/commons-rng-1.0/commons-rng-client-api-

1.0.jar";"%COMETS_HOME%/lib/commons-math3-3.6.1/commons-math3-

3.6.1.jar";"%COMETS_HOME%/lib/commons-math3-3.6.1/commons-math3-3.6.1-

tools.jar";"%COMETS_HOME%/lib/junit/junit-4.12.jar";"%COMETS_HOME%//lib/junit/hamcrest-core-

1.3.jar";"%GUROBI_HOME%/lib/gurobi.jar";"%COMETS_HOME%/lib/jogl/jogamp-all-platforms/jar/jogl-

all.jar";"%COMETS_HOME%/lib/jogl/jogamp-all-platforms/jar/gluegen-

rt.jar";"%COMETS_HOME%/lib/jogl/jogamp-all-

platforms/jar/gluegen.jar";"%COMETS_HOME%/lib/jogl/jogamp-all-platforms/jar/gluegen-rt-natives-linux-

amd64.jar";"%COMETS_HOME%/lib/jogl/jogamp-all-platforms/jar/jogl-all-natives-linux-

amd64.jar";"%COMETS_HOME%/lib/JMatIO/lib/jmatio.jar";"%COMETS_HOME%/lib/JMatIO/JMatIO-

041212/lib/jmatio.jar";"%COMETS_HOME%/bin/comets_2.10.0.jar" -

Djava.library.path="%GUROBI_HOME%/lib";"%GUROBI_HOME%/bin";"%COMETS_HOME%/lib/jogl/jog

amp-all-platforms/lib"  edu.bu.segrelab.comets.Comets -loader 

edu.bu.segrelab.comets.fba.FBACometsLoader -script %1 

 

In Linux and MacOS: 

 

#!/bin/bash 

if [ -z "$1" ]; then 

   echo usage: $0 \"comets script name\" 

   exit 

fi 

SCRIPT=$1 

 

java -classpath  

$COMETS_HOME/lib/colt/lib/colt.jar:$COMETS_HOME/lib/colt/lib/concurrent.jar:$COMETS_HOME/lib/jdi

stlib-0.4.5-bin.jar:$COMETS_HOME/lib/commons-lang3-3.9/commons-lang3-3.9-

sources.jar:$COMETS_HOME/lib/commons-lang3-3.9/commons-lang3-

3.9.jar:$COMETS_HOME/lib/commons-rng-1.0/commons-rng-simple-

1.0.jar:$COMETS_HOME/lib/commons-rng-1.0/commons-rng-sampling-

1.0.jar:$COMETS_HOME/lib/commons-rng-1.0/commons-rng-jmh-

1.0.jar:$COMETS_HOME/lib/commons-rng-1.0/commons-rng-core-

1.0.jar:$COMETS_HOME/lib/commons-rng-1.0/commons-rng-client-api-



1.0.jar:$COMETS_HOME/lib/commons-math3-3.6.1/commons-math3-

3.6.1.jar:$COMETS_HOME/lib/commons-math3-3.6.1/commons-math3-3.6.1-

tools.jar:$COMETS_HOME/lib/junit/junit-4.12.jar:$COMETS_HOME//lib/junit/hamcrest-core-

1.3.jar:/usr/local/share/java/glpk-

java.jar:$GUROBI_COMETS_HOME/lib/gurobi.jar:$COMETS_HOME/lib/jogl/jogamp-all-platforms/jar/jogl-

all.jar:$COMETS_HOME/lib/jogl/jogamp-all-platforms/jar/gluegen-rt.jar:$COMETS_HOME/lib/jogl/jogamp-

all-platforms/jar/gluegen.jar:$COMETS_HOME/lib/jogl/jogamp-all-platforms/jar/gluegen-rt-natives-linux-

amd64.jar:$COMETS_HOME/lib/jogl/jogamp-all-platforms/jar/jogl-all-natives-linux-

amd64.jar:$COMETS_HOME/lib/JMatIO/lib/jmatio.jar:$COMETS_HOME/lib/JMatIO/JMatIO-

041212/lib/jmatio.jar:$COMETS_HOME/bin/comets_2.10.0.jar -

Djava.library.path=$GUROBI_COMETS_HOME/lib/:$COMETS_HOME/lib/jogl/jogamp-all-platforms/lib  

edu.bu.segrelab.comets.Comets -loader edu.bu.segrelab.comets.fba.FBACometsLoader  -script 

$SCRIPT 

 

In Linux and MacOS certainly this file may be written in any alternative shells. Here we give an example 

only for bash.   

 

Comets is run on a command line by executing the comets_scr script (comets_scr.bat in Windows) 

which take as an argument the name of an input file, in this case named comets_script: 

 

In Linux and MacOS by executing on the command line prompt: 

comets_scr comets_script 

 

In Windows: 

comets_scr.bat comets_script 

 

Here we assumed that the path to the directory $COMETS_HOME where Comets is installed, and 

where comets_scr is has been set properly, and that it has been added to the user's path. Alternatively, 

comets_scr can be copied in the working directory, and the above command can be executed as 

described above or as: 

./comets_scr comets_script  

 

The name of the comets_script file is arbitrary and may be customized. If however the above java 

command in the comets_scr file is typed directly on the command line, the variable $SCRIPT (%1 in 

Windows) should be replaced with the name of the comets_script file. Also, the variables 

$COMETS_HOME and $GUROBI_COMETS_HOME (%COMETS_HOME% and 

%GUROBI_COMETS_HOME%) must be set, to the directories where Comets and Gurobi are installed. 

These variables will be set during the installation process, however the most common reason for failure 

to launch Comets is the failure to properly set them.  

The input file comets_script contains the information on the names of the two parameters and one 

layout input file: 

 

load_comets_parameters global_params.txt 

load_package_parameters package_params.txt 



load_layout  layout.txt 

 

Here global_params.txt, package_params.txt and layout.txt are the names of the input files that contain 

the parameters and the spatial layout correspondingly. The names of these files are arbitrary and may 

be customized. We have provided examples of these files in the text of the procedures.  

 

The procedures for executing a simulation job therefore (as illustrated in Fig. 2 in the main text ) is as 

follows: 

 

1. Prepare the input files global_params.txt, package_params.txt and layout.txt in the working 

directory. 

2. Prepare the files comets_scripts with the above names in the working directory.  

3. Run comets_scr comets_script on the command line.  

 

A warning is due here, that if the terminal where this command was executed is closed before the 

Comets run has finished, the job will be abruptly stopped, without finishing. One way to avoid this is to 

run it in the background by the nohup command in Linux and MacOS: 

 

nohup comets_scr comets_script & 

 

A common environment where Comets is one with a job queuing system. This is typically done on 

computational clusters. Here we present an example of a typical way Comets job can be submitted to a 

queue with the qsub command: 

 

qsub -pe omp 16 -l h_rt=48:00:00 qscript 

 

The two options are specifying the allocated resources for the job, in this example we are requesting 16 

slots for Shared Memory applications, and a total run time of at least 48 hours. The file qscript contains 

the steps necessary to run Comets:  

 

#!/bin/bash -l 

module load gurobi/9.0.0 

./comets_scr comets_script 

 

The first line simply identifies the file as a bash script, the second line loads the necessary cluster 

module, and the third line is the actual command to run Comets, as we discussed above.  

 

Supplementary Discussion 3: Spatial settings in the cometspy toolbox 

The cometspy toolbox is capable of operating all spatial settings available in COMETS. Here, we describe 

the minimal requirements to run a spatial simulation, and then describe some optional methods for 

more complex simulations. We recommend also to spend some time looking through the api documents 



available at https://cometspy.readthedocs.io/en/latest/index.html for a full list of cometspy objects and 

methods. Also, all methods have descriptions of usage when examined with help().  

Minimal settings 

For clarity, first we initialize cometspy and generate a test model using cobrapy’s cobra.test module.  

import cometspy as c 
import cobra.test 
ecoli_core = cobra.test.create_test_model(‘textbook’) 
ecoli = c.model(ecoli_core) 
ecoli.open_exchanges() 

1.       The primary setting which must be changed to have a spatial simulation is to change the grid 

attribute of the layout object. This attribute contains two numbers which specify the length and width of 

the spatial simulation, in lattice boxes.  

ly = c.layout() 
ly.grid = (10, 10) # sets up a spatial simulation of length = 10, width = 10 

2.       Additionally, model biomass can then be specified within this spatial range. This is done by 

providing a list of lists to the model’s initial_pop attribute. In each list, we first state the x location, then 

the y location, then the initial number of grams of biomass.  For example, here we put 1.e-6 grams of 

biomass at location (x = 3, y = 5) and 2.e-7 grams of biomass at location (x = 8, y = 5): 

ecoli.initial_pop = [[3, 5, 1.e-6], [8, 5, 2.e-7]] 

3.       Now we add that model to the spatial layout. 

ly.add_model(ecoli) 

4.       Set the spaceWidth parameter. Just like in a single-box simulation, the spaceWidth parameter 

(units of cm) is what sets the volume of a box (spaceWidth ^ 3), which influences the concentration of 

metabolites and therefore interacts with Michaelis-Menten uptake rates. However, it is even more 

critical in spatial simulations, because it will change how quickly metabolites and biomass will diffuse to 

adjacent boxes for a given diffusion constant. 

P = c.params() 
p.set_param(“spaceWidth”, 0.1) # in cm 

That is the minimal number of changes to create a spatial simulation. Metabolite concentrations will still 

need to be initialized. If a user sets the initial metabolite abundances using the standard 

set_specific_metabolite([metabolite name], [mmol]) method of the layout object, those metabolites will 

be put homogeneously into every box. The layout object and params object will still need to be added to 

a comets object to run, as usual. 

https://cometspy.readthedocs.io/en/latest/index.html


Optional settings 

1.       Layout methods to set initial mmol amounts of metabolites in specific locations, as well as their 

refresh rates and constant (static) values: 

layout.set_specific_metabolite_at_location(metabolite_name, location, amount) 

layout.set_specific_refresh_at_location(metabolite_name, location, amount) 

layout.set_specific_static_at_location(metabolite_name, location, amount) 

 2.       Layout method to add impenetrable barriers that block diffusion and biomass motion: 

layout.add_barriers(barrier_locations) 

 3.       Layout methods that set up “regions” in which metabolite diffusion parameters and friction can 

differ. 

layout.set_region_map(region_map) 

layout.set_region_parameters(region, diffusion, friction) 

 4.       Model method and associated params setting to use non-linear biomass diffusion: 

model.add_nonlinear_diffusion_parameters() 

params.set_param(“biomassMotionStyle”, “ConvNonlin Diffusion 2D”) 

 5.       Model method and associated params setting to use convective biomass motion: 

model.add_convection_parameters() 

params.set_param(“biomassMotionStyle”, “Convection 2D”) 

 6.       Params settings to set universal biomass diffusion constant 

params.set_param(“flowDiffRate”, number) 

 7.       Layout method to set all metabolites’, or metabolite-specific, diffusion constants 

layout.set_metabolite_diffusion(diffusion_constant) 

layout.set_specific_metabolite_diffusion(metabolite_name, diffusion_constant) 

 8.       Params settings to save spatially-explicit data: 



params.set_param(“writeBiomassLog”, True) 
params.set_param(“BiomassLogRate”, number) 
params.set_param(“writeMediaLog”, True) 
params.set_param(“MediaLogRate”, number) 
params.set_param(“writeFluxLog”, True) 
params.set_param(“FluxLogRate”, number) 

 

9. Access to saved results 

 

comets.biomass # is a pandas dataframe 
comets.media # is a pandas dataframe 
comets.fluxes_by_species # is a dictionary with model ids as keys and pandas dataframes as values 

Supplementary Discussion 4: Detailed structure of the Output Files 

Console output 

The standard console output of COMETS is either displayed on the GUI console or saved in an output file 

if run on a queueing system. The console output format is typically: 



-script 
running script file: comets_script 
Loading layout file 'layout.txt'... 
Found 2 model files! 
Loading 'e_coli_core1.txt' ... 
Loading 'e_coli_core1.txt' ... 
Done! 
 Testing default parameters... 
Done! 
Optimizer status code = 5 (looks ok!) 
objective solution = [D@99e8be2 
Loading 'e_coli_core2.txt' ... 
Loading 'e_coli_core2.txt' ... 
Done! 
 Testing default parameters... 
Done! 
Optimizer status code = 5 (looks ok!) 
objective solution = [D@7f1a75d 
Constructing world... 
Done! 
medialist    ac[e]    acald[e]    akg[e]    co2[e]    etoh[e]    for[e]    fru[e]    fum[e]    glc__D[e]    gln__L[e]    
glu__L[e]    h2o[e]    h[e]    lac__D[e]    mal__L[e]    nh4[e]    o2[e]    pi[e]    pyr[e]    succ[e] 
WRITING MEDIA LOG 
Cycle 1 
Total biomass: 
Model 0: 2.5117253201512343E-6 
Model 1: 2.51172552547532E-6 
Cycle complete in 0.695s 
Cycle 2 
Total biomass: 
Model 0: 2.52350543670516E-6 
Model 1: 2.523505417783118E-6 
Cycle complete in 0.254s   
… 
Cycle 10000 
Total biomass: 
Model 0: 1.8129744692017875E-5 
Model 1: 1.8466722853528566E-5 
WRITING MEDIA LOG 
Cycle complete in 0.315s 
Cycle 10001 
End of simulation 
Total time = 1343.506s 
 

 

In addition to the console output, if errors are detected, they are written in the standard error output 

file. The possible error messages are documented in the Troubleshooting section.  

 

Output files 

The generation of the output file is optional and is controlled with the corresponding parameter in the 

global parameters input file. The rate of the output recording is also controlled by an input parameter.   



 

Total biomass file. 

This is a space-delimited text format file with the first column containing the simulation step, 

and the integrated total biomass for each model in separate columns:  

0    5E-6 
1    5.0234319275E-6 
2    5.0469736628E-6 
3    5.0706257205E-6 
4    5.0943886175E-6 
 

The biomass unit is grams. 

 

Biomass file.  

This is a MATLAB .m format file with the record of the spatial layout of the biomass. The variable 

is of the following format:  

 

biomass_<step>_<model> (<xcoordinate>,<ycoordinate>)= <amount>; 

 

Example of a biomass file of a 100x100 points layout, containing two models with initial 

population at the center of the layout. The biomass recording rate is each 100 simulation steps.  

  

biomass_0_0 = sparse(100, 100); 
biomass_0_0(51, 51) = 2.5E-6; 
biomass_0_1 = sparse(100, 100); 
biomass_0_1(51, 51) = 2.5E-6; 
biomass_100_0 = sparse(100, 100); 
biomass_100_0(51, 51) = 3.5426406048E-6; 
biomass_100_1 = sparse(100, 100); 
biomass_100_1(51, 51) = 3.4688274362E-6; 
 

The biomass unit is grams. 

 

Media file 

The media file is a MATLAB .m file format with the record of all external metabolite amounts in 

mmol units.  The first line is an array of all metabolite names. The format is:  

 



media_<time>{<metabolite index>}(<xcoordinate>, <ycoordinate>) = <amount>; 
 
media_names = { 'ac[e]', 'acald[e]', 'akg[e]', 'co2[e]', 'etoh[e]', 'for[e]', 'fru[e]', 'fum[e]', 'glc__D[e]', 
'gln__L[e]', 'glu__L[e]', 'h2o[e]', 'h[e]', 'lac__D[e]', 'mal__L[e]', 'nh4[e]', 'o2[e]', 'pi[e]', 'pyr[e]', 
'succ[e]'}; 
media_0{1} = sparse(zeros(100, 100)); 
media_0{2} = sparse(zeros(100, 100)); 
media_0{3} = sparse(zeros(100, 100)); 
… 
media_10000{18}(100, 97) = 1E0; 
media_10000{18}(100, 98) = 1E0; 
media_10000{18}(100, 99) = 1E0; 
media_10000{18}(100, 100) = 1E0; 
media_10000{19} = sparse(zeros(100, 100)); 
media_10000{20} = sparse(zeros(100, 100)); 

 

Fluxes file 

This MATLAB .m format file contains the record of all fluxes of all models in each spatial point 

for a recorded time. The format is: 

 

fluxes{<time>}{<x coordinate>}{<y coordinate>}{<model index>} = [ <flux values>]; 
 
fluxes{10}{1}{1}{1} = [-1.5084028022E1 0E0 -1.4742953314E1 5.0561349588E-1 
5.0561349588E-1 -1.4742953314E1 0E0 0E0 0E0 -1.5084028022E1 8.39E0 -1.0840773838E1 
4.6863796078E-1 0E0 5.0561349588E-1 0E0 0E0 3.5002712702E1 -1.5084028022E1 
1.4742953314E1 -0E0 -0E0 0E0 1.5084028022E1 3.1251640737E1 -0E0 -0E0 -
1.8474787691E1 -0E0 -0E0 5.5395471544E1 -1.167028166E1 -0E0 -0E0 -2.5553890725E0 -
0E0 -1.7239784663E0 -0E0 -0E0]; 
 

Complete record file 

This is a file in the MATLAB .mat format that contains all the input and output information for a 

given COMETS run. This file can be of a very large size and is meant to be used only for archiving 

purposes.  

 

 



Matfile_example = 
 
  struct with fields: 
 
 allowCellOverlap: 'true' 
        deathRate: 0 
      defaultHill: 1 
        defaultKm: 0.0100 
      defaultVmax: 10 
    exchangestyle: 'Monod Style' 
     flowDiffRate: 3.0000e-10 
             flux: [5-D double] 
   growthDiffRate: 0 
  maxSpaceBiomass: 8.8000e-06 
  minSpaceBiomass: 1.0000e-10 
   numDiffPerStep: 10 
    numRunThreads: 10 
   showCycleCount: 'true' 
    showCycleTime: 'true' 
       spaceWidth: 0.0200 
         timeStep: 0.0100 
   timeStepsSaved: [11×1 double] 
    toroidalWorld: 'false' 
    total_biomass: [11×2 double] 

 

 

 

Supplementary Discussion 5: Setting the environmental variables in 

Mac OS X 
 

The environment variables for COMETS and Gurobi can be manually set on Mac OS X using plist files, 

which are loaded at login by the system’s launchctl service. Three plist files are required to run COMETS 

using the Matlab toolbox: one for COMETS_HOME, and two for Gurobi (one for GUROBI_HOME and one 

for the license file). These can be created and saved as follows: 

 

1. Quit MATLAB 
 

2. Open a text editor and paste the following commands into a blank file: 
 

<?xml version="1.0" encoding="UTF-8"?> 

 <!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" 

"http://www.apple.com/DTDs/PropertyList-1.0.dtd"> 

   <plist version="1.0"> 

   <dict> 

   <key>Label</key> 

   <string>ENVIRONMENT_VARIABLE</string> 

   <key>ProgramArguments</key> 

   <array> 

     <string>/bin/launchctl</string> 

     <string>setenv</string> 



     <string>ENVIRONMENT_VARIABLE</string> 

     <string>ENVIRONMENT_VARIABLE_LOCATION</string> 

   </array> 

   <key>RunAtLoad</key> 

   <true/> 

 </dict> 

 </plist> 

 

3. For each of the three files, replace ‘ENVIRONMENT_VARIABLE’ and 
‘ENVIRONMENT_VARIABLE_LOCATION’ as follows: 

 

ENVIRONMENT_VARIABLE ENVIRONMENT_VARIABLE_LOCATION 

COMETS_HOME /Applications/COMETS 

GUROBI_HOME /Library/gurobi902/mac64 

GRB_LICENSE_FILE / Library/gurobi902/gurobi.lic 

 

Note: the directories listed above are the default installation locations for COMETS and Gurobi. 

These locations must be changed in the plist files being generated if COMETS or Gurobi were 

installed in different directories. 

 

4. Save each of the plist files, e.g. as ‘cometspath.plist,’ ‘gurobipath.plist,’ and 
‘gurobilicensepath.plist’ in the directory ~/Library/LaunchAgents/. 

 

5. Either reboot your Mac to load the plist files, or load them manually as follows: 
 

a. Open Terminal and run the following commands: 
 
launchctl load ~/Library/LaunchAgents/cometspath.plist 

launchctl load ~/Library/LaunchAgents/gurobipath.plist 

launchctl load ~/Library/LaunchAgents/gurobilicensepath.plist 
 

b. Quit then reopen Terminal. You can run the command printenv to verify that the 
environment variables exist. 

 

6. Open MATLAB and use the getenv function (e.g. getenv(‘COMETS_HOME’)) to verify 
that the environment variables have been loaded. 

 

 

 

 

 

 

 

     



Supplementary Table 1: Table of COMETS input parameters, with units, 

default value and a short definition. 

Simulation parameters 

Parameter Unit Default value Definition or notes 

timeStep hour 1.0 The amount of time 
between two 
consecutive 
simulation updates.  

spaceWidth cm 0.1 Width of one side of 
the 3d box in the 2D 
or 3D grid. 
Therefore, volume 
of a box = 
spaceWidth3. 
Warning: this value 
matters for molarity 
calculations. 

maxCycles steps Unlimited Number of DFBA 
iterations (steps) for 
the simulation. The 
total simulation time 
will be timeStep * 
maxCycles.  

deathRate fraction/timepoint 0.1 The rate of biomass 
removal per time 
step. 

maxSpaceBiomass gr 10 Maximum biomass 
allowed in one grid 
box. 

minSpaceBiomass gr 1e-10 Minimum biomass 
in one grid box not 
considered zero. 

cellSize gr 4.3e-13 Grams in one cell. 
Relevant in 
simulations with 
serial dilutions or 
mutations.  



exchangeStyle Standard FBA,  
Monod Style, 
Pseudo-Monod Style 

Standard FBA The uptake function 
for the exchange 
reactions.   

defaultVmax mmol (gCDW)-1 
(hour)-1 

10 Default maximum 
uptake rate of a 
metabolite for the 
Monod Style 
exchange. This 
overrides exchange 
reaction boundaries 
with greater 
magnitude, when 
using Monod 
updating. 

defaultKm mmol (cm3)-1 5 Default 
concentration of a 
metabolite in which 
uptake is half-
maximal. This value 
is compared with 
the metabolite 
concentration / 
spaceWidth3 when 
computing Monod 
uptake. 

defaultHill  2 Hill coefficient. 
Alters the shape of 
the Monod uptake 
curve. 

defaultAlpha 1/(mmol (cm3)-1) 1 The default Alpha 
coefficient (slope) 
for the Pseudo-
Monod style 
exchange. 

defaultW mmol (gCDW)-1 
(hour)-1 

10 The default W 
coefficient (plateau) 
for the Pseudo-
Monod style 
exchange. 

minConcentration mmol (cm3)-1 1e-26 Minimal 



concentration of 
metabolites in the 
media. 

numRunThreads  1 If >1, allow 
multithreaded 
computation. The 
number of threads 
to run in parallel.  

numDiffPerStep  10 Number of substeps 
of media diffusion 
per biomass update 
step.  

allowCellOverlap  FALSE If true, allows 
different species to 
occupy the same 
space. 

 

Parameters related to spatial propagation of either biomass or metabolites  

Parameter Units/Values 
allowed 

Default Description 

biomassMotionStyle Diffusion 2D(Crank-
Nicolson),  Diffusion 
2D(Eight Point),  
Diffusion 3D,  
Convection 2D, 
Convection 3D,  
ConvNonlin 
Diffusion 2D 

Diffusion 2D(Crank-
Nicolson) 

Sets the method 
used for 
propagation of 
biomass. Only one of 
the indicated strings 
is an allowed value. 

growthDiffRate cm2/s 1.00E-07 The default diffusion 
constant for the 
actively growing 
biomass in the 
Diffusion 2D (CN 
and EP) model. 

flowDiffRate cm2/s 1.00E-07 The default diffusion 
constant for the 
non-growing 
biomass in the 
Diffusion 2D (CN 



and FP) model. 

defaultDiffConst cm2/s 1.00E-05  The default diffusion 
constant for 
extracellular 
metabolites. 

 

Parameters related to log file writing 

Parameter Default Description 

useLogNameTimeStamp TRUE If TRUE, appends a time stamp to 
every log file name. 

writeFluxLog FALSE If true, writes fluxes out to a log file.  

fluxLogName flux_log.txt The name of the flux log file. 

fluxLogRate 1 How often to write to the flux file 
(number of simulation steps). A value 
of 1 will cause writing after every step. 

writeMediaLog FALSE If true, writes media information to a 
log file. 

mediaLogName media_log.txt The name of the media log file. 

mediaLogRate 1 How often to write to the media file. 

writeSpecificMediaLog FALSE If true, writes the media log only for 
the metabolites specified by 
specificMedia parameter.  

specificMediaLogName specific_media_log.tx
t 

The name of the specific media log file. 

specificMedia  Names of metabolites for which we 
want to store media. 

writeBiomassLog FALSE If true, writes biomass information to a 
log file. 

biomassLogName biomass_log.txt The name of the biomass log file. 

biomassLogRate 1 How often to write to the biomass file. 

writeTotalBiomassLog FALSE If true, writes a summation of all 
biomass information to a log file. 



totalBiomassLogName total_biomass_log.txt The name of the total biomass log file. 

totalBiomassLogRate 1 How often to write to the total biomass 
log file. 

 

Parameters related to graphical user interface and image caption 

Parameter Default Description 

showGraphics TRUE If true, the image will be 
displayed. 

colorRelative TRUE If true, colors each space 
relative to the space with 
the highest value. 

showCycleTime TRUE If true, shows the time it 
took to finish the fba cycle 
in the output. 

showCycleCount TRUE If true, shows the current 
cycle number in the output.        
  

pauseOnStep TRUE (false if running a 
script) 

If true, pauses the 
simulation after completing 
a step. 

displayLayer 0 Sets the current medium 
component (or biomass) to 
be displayed. The user must 
determine the number of 
the medium or biomass 
from the layout.  

pixelScale 4 The number of pixels to 
render for each space. 

saveSlideshow FALSE If true, saves a graphics 
slideshow to a series of files.  

slideshowName 
 

“/path_to_directory/slidesh
ow” 

The header of the names 
and path of the files with 
saved images. The format is 
"name"_number.slideshowE
xt 



slideshowColorValue 10 Sets the color of the biomass 
when creating and saving an 
image. 

colorRelative TRUE Show the colors relative to 
each model, i.e. on an RGB 
palette.    

slideshowColorRelative TRUE As colorRelative above, 
applied to the slideshow. 

slideshowRate 1 The number of steps 
between taking a slideshow 
picture. 

slideshowLayer 0 Sets the current medium 
component (or biomass) to 
be displayed. The user must 
determine the number of 
the medium or biomass 
from the layout.  

slideshowExt png The file extension(format) 
for slideshow pictures. 
Currently, “png” “bmp” and 
“jpg” are supported. “png” is 
recommended. 

barrierColor 0xff7D7D7D (gray) Barrier color in hex. 

backgroundColor 0xff000000 (black) Background color in hex.  

 

Parameter related to the extracellular reactions model 

numExRxnSubsteps  12 Number of 
extracellular 
reactions substeps 
per biomass update 
step. 

 

Parameters related to lag phases 

Parameter Unit Default value Definition or notes 

simulateActivation  FALSE If true, the models 
are activated with 



the set activation 
rate. 

activateRate h-1 0.001 The value of 
activation rate. 

 

Parameters related to specific  modes of growth, such as serial dilutions or chemostat mode 

Parameter Unit Default value Definition or notes 

batchDilution  FALSE Whether to perform 
serial dilutions.  

dilFactor Dil. factor 1e-2 If >1, dilution factor; 
if <1, 1/dilution 
factor. 

dilTime h 12 Periodicity of serial 
dilutions.  

metaboliteDilutionR
ate 

Fraction per hour 0 The rate of dilution 
of a metabolite.  

 

 

Parameters related to evolution (mutations) 

Parameter Unit Default value Definition or notes 

evolution  FALSE If true, the 
simulation will 
perform mutations. 

mutRate Per genome and 
cycle 

1e-9 Mutation rate for 
reaction deletions. 

addRate Per genome and 
cycle 

1e-9 Mutation rate for 
reaction additions. 

 

 

Parameters related to genome size cost 

Parameter Unit Default value Definition or notes 

costlyGenome  FALSE Does genome size 
penalize growth. 

geneFractionalCost      0 How much does 



 genome size 
penalize growth. 
The cost grows 
exponentially with 
genome size, with an 
exponent of 2. 

 

 

Additional, less often used general simulation parameters 

Parameter Units Default Description 

toroidalWorld  FALSE If true, creates 
periodic boundary 
conditions. 

showCycleCount  TRUE If true, shows the 
current number of 
cycles/steps on the 
console.  

showCycleTime  TRUE  If true, shows the 
time of a cycle/step 
on the console.  

randomSeed  0 Seed value for the 
semi-random 
number generator. 

defaultVelocityVecto
r 

cm/s (0,0,0) The default value for 
the velocity vector 
in the flow model. .  

writeVelocityLog 
 

 FALSE If true, writes 
velocity information 
to a log file. 

velocityLogRate  1 How often to write 
to the velocity file 
(number of 
simulation steps). A 
value of 1 will cause 
writing after every 
step. 

velocityLogName  velocity_log.txt The name of the 



velocity log file. 

writeMatFile  FALSE If true, writes all of 
the simulation  
information to a log 
file. 

matFileName  comets_log.mat The name of the 
.mat log file. 

matFileRate  1 How often to write 
to the .mat  file 
(number of 
simulation steps). A 
value of 1 will cause 
writing after every 
step. Warning: 
writing to this file 
every step may 
result in very large 
.mat file. 

biomassLogFormat  MATLAB The format in which 
the log file will be 
written. The default 
is .m MATLAB file. If 
the value is  
COMETS, the output 
is written in a space 
separated file.   

mediaLogFormat  MATLAB The format in which 
the log file will be 
written. The default 
is .m MATLAB file. If 
the value is  
COMETS, the output 
is written in a space 
separated file.   

fluxLogFormat  MATLAB The format in which 
the log file will be 
written. The default 
is .m MATLAB file. If 
the value is 
COMETS, the output 



is written in a space 
separated file.   

velocityLogFormat  MATLAB The format in which 
the log file will be 
written. The default 
is .m MATLAB file. If 
the value is  
COMETS, the output 
is written in a space 
separated file.   

 

 

Model-specific, these parameters are specified in the model file  

Parameter Unit Default value Definition or notes 

Optimizer GUROBI, 
GLPK 

GUROBI The optimizer to be 
used for solving the 
FBA optimization. 

OBJECTIVE_STYLE MAX_OBJECTIVE_M
IN_TOTAL, 
MAX_OBJECTIVE 
 
 

MAX_OBJECTIVE 
 

The type of 
optimization to be 
used.  

VMAX_VALUES     mmol (gCDW)-1 
(hour)-1 

Same as the global 
default. 

Maximum flux 
constant for the 
Michaelis-Menten 
type exchange, for 
each reaction. Each 
reaction can be 
assigned separate 
value in the model 
file.    

KM_VALUES mmol/cm3 Same as the global 
default. 

The Michaelis 
constant for the 
Michaelis-Menten 
type exchange, for 
each reaction. Each 
reaction can be 
assigned separate 
value in the model 
file.   



packedDensity g/cm3 1.0 The biomass density 
of densely packed 
cells in the 
CONVECTION 2D 
model. 

frictionConst Pa sec/cm2 1.0 The friction constant 
in the Convection 2D 
model. 

elasticModulus Pa 1.0 The elastic constant 
in the Convection 2D 
model. 

convDiffConstant cm2/s 1.0 The diffusivity 
constant in the 
Convection 2D 
model. 

convNonlinDiffZero cm2/s 1.0 The linear diffusivity 
in the ConvNonlin 
Diffusion 2D model.  

convNonlinDiffN N/A It is a function 
of  
convNonlinDiffExpo
nent 

1.0 The non-linear 
diffusivity 
coefficient in the 
ConvNonlin 
Diffusion 2D model.  

convNonlinDiffExpon
ent 

 1 The exponent in the 
ConvNonlin 
Diffusion 2D model.  

convNonlinDiffHillN  10 The exponent in the 
Hill function model 
of local growth 
dependent 
diffusivity. 

convNonlinDiffHillK N/A It is a function 
of 
convNonlinDiffHillN
. 

0.9 The K constant in 
the Hill function 
model of local 
growth dependent 
diffusivity. 

noiseVariance  0.0 The variance of the 
growth noise factor. 



neutralDrift  FALSE The boolean switch 
for the demographic 
noise. 

neutralDriftSigma g1/2 s-1 

 

 The prefactor 
constant for the 
demographic noise.  
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