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miniScan acquisition system 
 
The miniScan is an acquisition system suitable for a first approach to the functional ultrasound imaging                
method. With a simple hardware implementation it enables to run dedicated sequences for acquisition.              
Moreover, it includes a software package to register the functional ultrasound imaging data with the Allen                
Mouse Common Coordinate Framework, v3 (CCF) and compute both functional activity maps and             
time-course activity of individual regions. 
 
1. Installation 
Materials.​ The hardware is composed of the following parts:  

● Ultrafast ultrasound scanner (Vantage 128 or 256, Verasonics) running versions 3.0.7, 3.4.0, 3.4.2,             
or 3.4.3. Both MATLAB and Verasonics software are supposed to be installed in the master               
computer provided with the Vantage system. 

● Graphic processing unit (Nvidia, GeForce). Recommended models are GTX         
1060/1070/1080/1080-Ti or RTX series. 

● Motorized-linear stage (T-LSM100A, Zaber Technologies Inc.). See Note 1 to use another motor. 
● Linear ultrasound transducer (Verasonics L22-14Vx or Vermon L15-Xtech). 

The CAD files of the probe holder are included in the software package. 
 
Installation of the fUS system.  

● Plug the Vantage system to the master computer by following instructions given by the "Vantage               
Initial Setup" documentation.  
Run the ​SystemVerificationTest.m to ensure that the system works correctly with a valid             
license.  
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● Switch off the master computer, open the cover and remove the graphic card unit. 
● Insert the Nvidia GeForce card in the PCIe slot and plug the power supply of the card. 
● Connect the motorized linear stage to the serial port COM1 of the master computer. 

 
Software installation. 

● Download the CUDA toolkits and follow installer guidelines. 
● Download and unzip ‘​miniScan.zip’ ​(see Supplementary Software) into the root of the C:\ drive              

of the master computer. Then, found 3 folders under ​C:\miniScan: 
\acquisition contains the acquisition software, 
\data the​ ​folder where the acquired data is saved, 
\miscellaneous contains both test and stimulus codes, 
\​mechanic_parts CAD files of the mouse headpost, mouse holder and probe holder. 

 
Verification of installed components. 

● Launch MATLAB and select the path ​C:\miniScan\miscellaneous 
● Test the GPU computing by running: 

>> test01_ComputingGPU <enter> 

● The computing time is controlled through simulated data.  
● Check both motor communication and function as follow: 

>> test02_Motor <enter> 

The motor will move 1 cm back and forth. 
! CAUTION Free-up space around the motor to avoid damages of neighboring systems or tools. ​If the               
ultrasound probe is already mounted on the motorized-linear stage, we strongly advise users to free-up               
space around it to avoid damaging the probe. 
 
miniScan​ ​setup. 
Inside ​C:\miniScan ​, edit ​start_miniScan.m ​as follow: 

● line 5, select the path to the Verasonics software, 
● line 7, select the version of the Verasonics software by changing the string variable:              

VANTAGEVERSION ​. The '​Emulator ​' version that enables to run ​miniScan without the Verasonics            
hardware/software. 

 
Note 1: Use of a different motor.  
To use a different motor, users must program a MATLAB object with the template ​stpMotorTemplate.m               
located in ​C:\miniScan\miscellaneous ​. After programming and testing the action of each method,            
rename the class to ​stpMotor ​ and replace it in​ C:\miniScan\miniScan. 
 
2. Using miniScan  
In MATLAB, select the folder ​C:\miniScan ​and run: 

>> start_miniScan <enter> 

A 3-panel graphic user interface opens as shown in Figure 1.a. The left panel allows to adjust the settings,                   
the middle one allows to set acquisition modalities and the right panel contains the experimental notebook. 
 
2.1. Settings panel. 
The panel ‘Settings’ allows to fill in the acquisition parameters in 4 distinct sections: 

● In the ‘File name’ section enter the 'mouseID'. This will tag all acquisitions along the imaging                
sessions. 
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● In the 'Sequence' section, click the 'Load' button. The sequence will be loaded to the Verasonics                
system. Once the Acquisition status box turns ‘Free’ and green, the system is ready to proceed with                 
the next step. 

● In the 'Motor’ section, click the 'Open’ button (change the name of the serial port if your motor is not                    
connected to COM1). 

● In the 'Stimulus' section, select the serial port connected to the stimulus computer and click the                
'Open’ button. This port allows the synchronization to other devices with default MATLAB             
parameters (9600 bauds, 8 data bits, parity none, terminator LF). 
 

 
Using the motor. ​The motor can be moved using the manual knob located at its back or through the GUI                    
by setting the position ('Target' field) and moving the probe ('Move' button). Distances are in mm. Set a new                   
origin (i.e., position 0) by clicking the 'Set origin' button, the displacement of the probe is then measured                  
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Figure 1. a) Graphical user interface of the miniScan acquisition software. b) Axis convention for the                
acquisition matrices. c) Graphical user interface of the registration_ccf software. 



from this new origin position. To avoid any issue with the transducer while in motion, we strongly                 
recommend testing the motor in advance and identify the positive and negative directions of the motor. To                 
interrupt the movement of the motor, hit the 'STOP' button. 
 
Forcer trigger. ​The visual stimulus is triggered by a character 'T' sent through a serial port. To test the                   
visual stimulus, trig it manually by clicking the 'Force Trigger' button​. 
 
Fast mode 100ms. ​The Default Mode offers a temporal resolution of 500ms. One can select a faster                 
imaging mode with a 100-ms temporal resolution by selecting the 'Fast mode 100ms’ checkbox in the                
'Sequence' section. This mode disables the real-time display of µDoppler images to save computing              
resources. 
 
Gain. The ‘Gain’ button of the 'Sequence' section adapts the gain in the reception amplifier. The gain value                  
ranges from 1 to 1000. If the Doppler image display shows some saturation, reduce the gain value. 
 
2.2. Acquisition panel 
Single plane.  
The 'Single image' subpanel enables to freely explore the brain volume with single plane acquisitions. 
 
The 'Bmode' button starts the real-time visualization of rough echo images of the tissue. While this mode is                  
not essential for functional imaging, it remains highly useful to align the probe to the brain, detect trapped                  
air bubbles or find the edges of the cranial window. Stop the live imaging by clicking a second time to the                     
'Bmode' button. 
 
The 'Doppler' button allows the acquisition of a single high-quality Doppler image in 2 seconds. This mode                 
is used to check the status of the brain tissue, perfusion and image quality. 
 
The 'Save' button saves the last image computed in Matlab format. This file is named after the 'File name'                   
previously filled in the 'Settings’ panel, an extension provides the type of image and a 'hhmmss' timestamp                 
(e.g., ​mouseID_110139_DoppPlane.mat ​). The saved file is then logged on to the 'Journal' where extra              
information can be edited. 
 
The 'Functional' button performs a functional acquisition composed of 70 µDoppler images at 2 Hz (10 Hz in                  
fast mode). At image 35, the master computer automatically triggers the stimuli. Once completed, the file is                 
automatically saved with both timestamp and 'FusPlane' extensions (e.g.,         
mouseID_110148_FusPlane.mat ​). See Appendix 2 for more information about the ultrasound          
sequence. 
 
Scan volume. 
Before addressing functional activity of a brain volume, set (i) step size information (in mm) in the 'Step'                  
field and (ii) the number of planes in the 'N.planes' field. The scan starts at the position 0 of the motor and                      
moves with the defined step. The brain must be scanned from anterior to posterior regions to follow the                  
atlas orientation.  
! CAUTION Before starting the scanning session, confirm that the 'Set origin' has been performed. Thus,              
we strongly recommend moving the motor to the origin to avoid unexpected movements from a wrong                
origin.  
 
Doppler volume. 
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The 'Doppler' button performs an anatomical scan consisting of the acquisition of single µDoppler images of                
each plane of the scanned volume. This scan is used for the registration with the Allen Mouse CCF and can                    
be acquired at higher spatial resolution (~0.1 mm) than the functional scan. The Doppler volume is                
automatically saved with both timestamp and 'AnatVol' extensions (e.g.,         
mouseID_111201_AnatVol.mat ​).  
 
Functional volume. 
The ‘Functional’ button performs a functional acquisition composed of 70 µDoppler images at 2Hz (or 10Hz                
using the fast mode) for each plane of the scan. At image 35, the master computer automatically triggers                  
the stimulus by sending a character 'T' through the stimulus serial port. Once completed, the scan                
composed of 'Nplanes' is automatically saved with both timestamp and 'FusVol' extensions (i.e.,             
mouseID_111621_FusVol.mat ​). See Appendix 2 for more information about the ultrasound sequence. 
 

2.3. Acquisition status and Journal subpanels 
Acquisition status. 
This subpanel displays real-time information of the acquisition process including the number of frames              
acquired and the frame rate. Furthermore, the acquisition can be aborted at any moment by hitting the                 
'STOP' button, the acquired data until this point will be saved as described above. 
 
Journal. 
The 'Journal' is a text file used to log all the files recorded over sessions. This section can be                   
complemented with experimental information. The file is automatically updated after each modification and             
saved in .txt format. 
 
Images, scans and journal files are all saved in ​C:\miniScan\data ​. 
 
3. Using customer parameters. 
The miniScan provides a default set of parameters optimized for the probe L15-Xtech and the experimental                
configuration described in the protocol. This default configuration constitutes a basic example to start with               
the fUS method but most of the users will need some adaptations for their specific experiments. This                 
section is dedicated to users interested in adapting the acquisition and imaging parameters to their specific                
applications.  
 
3.1 Changing the acquisition parameters. 
The system starts with a default configuration defined in the file ​parametersDefault.m (folder             
c:\miniScan\acquisition ​). Users can modify the file ​parametersUser.m in the folder          
c:\miniScan\acquisition and create new parameters files adapted for different experimental          
conditions. To modify one or multiple parameters you need to perform the following steps: 

1) Edit the file ​parametersUser.m and modify the desired parameter. For example, change            
par.imageOriginZ=6. ​This parameter changes the starting depth of the image to 6mm. 

2) Start the miniScan system. 
3) To load the parameters using the method ​loadUserParameters with the filename as            

argument  
>> SCAN.loadUserParameters(‘parametersUser’); 

 
You can check that the image starts at 6 mm instead of 3 mm as in the default configuration. With this                     
method, different users can save the configuration in different file names. 
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Some parameters perform simple modifications and are easy to manage. Some others need a deeper               
understanding of the ultrasound system and must be modified carefully. For example, an increase in the                
number of angles can be useful to increase the resolution but it implicates more data transfer and                 
computing and the effective frame rate can be reduced.  
 
To ease the adaptation, the parameters are organized in 8 categories that modify: 

1) the transducer, 
2) the ultrafast plane wave compound, 
3) the beamforming parameters the imaged region, 
4) the temporal resolution and acquisition duration, 
5) the vascular filtering to select the blood signal, 
6) the trigger out to synchronize with other instruments, 
7) the mechanical scanning method, 
8) other specific parameters of the electronics. 
 

 
 
3.2 Change the ultrasound probe. 
The following parameters allow the modification of the ultrasound probe. 
% transducer parameters 

par.probeFreq=15.265; ​% central frequency of the probe (MHz) 
par.probeElementSize=0.1; ​% size of the probe elements (mm) 
par.probeNumberElements=128; ​% number of elements of the probe. 
par.antiAliasCutoff=30; ​% antialiasing filter (MHz)  
par.LnaZinSel=25; ​% amplifier impedance (integer 0 to 31) 
par.HVset=25; ​% WARNING POWER stimulation voltage.  
 

 

probeFreq ​is the central frequency of the probe in MHz. This frequency must be one of the demodulation                  
frequencies enabled by the reception electronics (See table 3.3.1.1 of the vantage programming manual).              
Accepted frequencies in the range of 5 to 15 MHz are: 5.2, 5.6818, 6.25, 6.9444, 7.8125, 8.9286, 10.4167,                  
12.5, 15.625. 
 
probeElementSize​ is the distance between two elements of the probe (pitch) in mm.  
 
probeNumberElements is the number of elements of the probe. If the probe has less than 128 elements,                 
the unused channels are disabled.  
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WARNING.​ The following 5 parameters modify the power emitted by the probe: 
● compoundAngles  

● compoundFrameRate  

● compoundAverage  

● emissionLenght  

● HVset  

High emission power can destroy the probe. Be ​extremely careful with a modification of ​HVset​. The                
electronics can send stimulus pulses until 100V that can destroy the probe. As a protection, the                
parameters file has a basic check of the emission power between lines 68 to 79. We consider a limit of                    
1% of emission duty cycle and a maximal voltage of 20V. This limit is acceptable for the probe L15-Xtech                   
but if the user changes the probe, he must carefully check the new limits. In general, higher is the                   
frequency, lower is the maximum voltage. We are discharged from all responsibility in case of probe                
damages. 



antiAliasCutoff defines the cutoff frequency of the antialiasing filter of the reception electronics.             
Accepted values (in MHz) are 5, 10, 15, 20 and 30. In general, this parameter must be approximately twice                   
the central frequency of the probe. 
 
LanZinSel defines the input impedance of the low noise amplifier (integer 0 to 31, see the verasonics                 
manual).  
 
HVset defines the stimulation voltage. ​WARNING. The electronics can send up to 100 V that can                
potentially destroy the probe. Be very careful with this voltage.  
 
3.3 Modify the ultrafast plane compound method 
These 5 parameters enable the modification of the compound plane wave emission. See Appendix 2               
Ultrasound sequence before modifying these parameters. 
% compound definition 

par.compoundAngles=[-6 -4 -2 0.25 2 4 6]; ​%WARNING POWER angles for… 
par.compoundFrameRate=500; ​%WARNING POWER frame rate… 
par.compoundAverage=3; ​%WARNING POWER number of averaging  
par.emissionLenght=2; ​%WARNING POWER number of …  
par.compoundAverageCoef=0.5; ​%multiplicative coefficient… 
 

compoundAngles is a vector to indicate the angles of the plane waves for the compound method in                 
degrees. Increasing the number and the value of the angles can improve the contrast and resolution of the                  
image at the cost of some extra computing time. 
 
compoundAverage indicates the number of averages of the same plane wave emission. To increase the               
SNR, the same angle is emitted multiple times and the received signals are automatically added inside the                 
electronics. As this averaging is done inside the electronics, the data transmitted to the computer and the                 
computing time are not changed. 
 
compoundAverageCoef is a multiplicative coefficient between 0 to 1 that is applied to the received               
echoes. The objective of this coefficient is to avoid a saturation of the reception when using a                 
compoundAverage ​. The signals are digitized at 12 bits and, after the internal filtering, the output has 14 or                  
15 bits (depending on the filters) and they are stocked in standard integers of 16 bits. Adding 3 or more                    
signals can produce an overflow of the 16 bits and unexpected artifacts in the image. To avoid this potential                   
overflow, the ​compoundAverageCoef is recommended to be ​1/compoundAverage ​. In some cases (low            
signal), it can be ​1/sqrt(compoundAverage) ​ to keep the maximal number of bits. 
 
compoundFrameRate is the frame rate in Hz of the compound images. The firing rate (i.e. the frequency                 
between two emissions) is    
firingRate=length(compoundAngles)*compoundAverage*compoundFrameRate​. 
It is important to check that the ​firingRate is physically possible. Firstly, this frequency cannot be higher                 
than ~30KHz due to electronic restrictions. Secondly, the maximal depth that can be imaged depends of the                 
firingRate ​ as ​maximalDepth=soundSpeed/(firingRate*2).  
This depth is the physical distance that the wave can travel and is reflected during two consecutive                 
emissions. The parameters program checks the consistency of the firing rate and displays a warning in                
case of error.  
 
3.4 Modify the beamforming and imaging regions 
The beamforming can be parametrized using the following parameters 
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% imaging region and beamforming  

par.imageOriginX=0; ​% first position in depth dimension (mm) 
par.imageOriginZ=3; ​% first position in the lateral dimension(mm) 
par.imagePixelX=0.1; ​% pixel dimension in the lateral dimension (mm) 
par.imagePixelZ=0.075; ​% pixel dimension in the depth dimension (mm) 
par.imageNumberPixelsX=128; ​% number of pixels in lateral ( columns) 
par.imageNumberPixelsZ=128; ​% number of pixels in depth (rows) 
par.imageFNumber=1; ​% numerical aperture of the probe. 
par.imageApodization=0.5; ​% beamforming apodization (0 to 1)  
par.soundSpeed=1.5; ​% sound speed (mm/​µ​s) 

 
 
imageOriginX, imageOriginZ, imagePixelX, imagePixelZ, imageNumberPixelsX,     

imageNumberPixelsZ enable to define the region to image and the spatial resolution. The units of the                
first 4 parameters are mm. Figure 2 indicates the effect of each parameter. The absolute origin is defined at                   
the surface of the element 0 (first channel) of the ultrasound probe. From this point, we designate the origin                   
of the imaged region using ​imageOriginX and ​imageOriginZ ​. The size of the pixel is characterized by                
imagePixelX and ​imagePixelZ and the number of columns and rows to image by             
imageNumberPixelsX ​ and ​imageNumberPixelsZ ​ respectively.  
 
Note that the number of columns is independent of the number of elements in the probe and the pixel size                    
is also independent of the probe pitch. For example, for a probe of 128 elements and 0.1mm pitch it is legal                     
to beamform 200 pixels of 0.05mm in the lateral dimension. 
 
imageFNumber defines the f-number to perform the beamforming. The f-number describes the aperture             
over the focal distance, as a rule of thumb it is approximately the pitch of the probe divided by the                    
wavelength.  
 
imageApodization is a number between 0 and 1 that indicates the fraction of the channels that are                 
apodizated in the beamforming. This parameter can be used in combination with imageFNumber to              
optimize the resolution of the image.  
 
soundSpeed​ determines the sound speed of the medium in mm/µs.  
 

 
Figure 2. Effect of the beamforming parameters in the imaged region. 
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Changing the vascular filter. 
A high pass filter and a singular value decomposition filter are implemented to select the blood signal and                  
reject the tissue and movement signal. They can be set up with the following parameters. 
% vascular filtering 

par.vascularFilterSVD=0.1; ​% fraction of singular values to eliminate. 
par.vascularFilterHighPass=15; ​% high pass filter cutoff (Hz). 

 
vascularFilterHighPass is the cutoff frequency of a high pass filter. If the value is 0, the high pass                  
filter is bypassed. 
 
vascularFilterSVD is a number between 0 and 1 that indicates the fraction of singular vectors to be                 
eliminated in the filter. The filter can be adjusted depending on the experimental configuration. If the                
movements are moderate (for example in anesthetized animals), this filter can be relatively low enabling to                
select more signal in the low frequencies associated with the smallest vessels. On the contrary, when using                 
awake and active animals, it is recommended to increase the value of the filter. 
 
 
3.5 Temporal resolution and imaging duration  
Two parameters enable to control the temporal resolution and the number of vascular images to acquire: 
% temporal resolution  

par.temporalResolutionNormal=5; ​% temporal resolution in units of 0.1s  
par.numberVascularImages=70; ​% total number of images in a fUS acquisition 
 

temporalResolutionNormal is an integer number. In the normal mode, this parameter fixes the             
temporal resolution as  
dT = temporalResolutionNormal/compoundFrameRate*50.  
Using the default compoundFrameRate of 500Hz the temporal resolution is  
0.1s*temporalResolutionNormal. 
 
The temporal resolution is equivalent to the “exposure time” in an optical camera. The vascular image is                 
computed as the average intensity of the filtered compound images. This parameter changes the number of                
compound images to average as a multiple of 50 images in the present implementation. However, it is                 
important to understand that using the maximal speed (i.e the fast mode or temporalResolutionNormal=1)              
does not reduce the SNR. For example, the user can (in post-processing) average 5 fast vascular images                 
and obtain the same SNR than averaging inside the system by using a temporalResolutionNormal of 5. The                 
main effect of this parameter is a reduction in the volume of data to save.  
 
numberVascularImages​ is the total number of vascular images in a fUS trial. 
 
3.6 Configure trigger. 
The trigger can be configured with the following parameters: 
% trigger 

par.serialTriggerOut=[10 20 30]; ​% images to send a serial trigger. 
par.electronicTriggerOut=0; ​% sets the trigger out (0 off, 1 on). 
  
serialTriggerOut Number of images to send a trigger (a character ‘t’) by the serial port. It can be a                   
vector with multiple images, in the example the trigger is activated at images 10, 20 and 30.  
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electronicTriggerOut must be 0 or 1. If 1, trigger signals are sent by the trigger out connector placed                  
in the back panel of the Vantage electronics. This signal is repeated each 50 compound images. This signal                  
can be used to synchronize different tools running in asynchronous mode (cameras, electrophysiological             
recordings, …).  
 
3.7 Mechanical scanning 
These parameters enable to scan the brain planes with a list of preselected positions. 
% motor  

par.motorRandom=0; ​% 1=random mode, 0=linear scan 
par.motorRandomPositions=[0.25 0.75 0.5]; ​% positions for random motor. 
 
motorRandom can be 0 or 1. If 0, the scan is linear. If 1, the scan uses the random positions defined in                      
motorRandomPositions.  
 
motorRandomPositions defines a list of positions when motorRandom is 1. The brain is scanned at the                
positions defined in this vector. The number of defined positions must be equal or higher than the number                  
of scanning planes. 
 
Note: these two parameters are independent of the ultrasound part of the system and can be changed                 
directly in the properties of the SCAN object. For example, to start a random scanning, you can perform: 

SCAN.motorRandom=1; 

SCAN.motorRandomPositions=[0 1.5 0.5 3.0 2.5 1.0 2.0 0.75]; 

By this method, the user can change the positions or switch between random/linear at each new scan                 
without reloading all the sequence parameters.  
  
Specific parameters of the electronics.  
These last set of parameters control some specific parameters of the electronics: 
% other specific parameters of the electronics 

par.DebugTiming=0; ​% 0 or 1. when 1 there is a warning each time the…  
par.codeSampleMode=2; ​% must be 2 or 4. 2 sets the acquisition mode 
par.InputFilter=[+0.00058 +0.00018 -0.00113 -0.00128 -0.00119 +0.00656 …  

% 21 coefficients of the input for filter. 
 
DebugTiming must be 0 or 1. If 1, the system displays a message each time the sequencer cannot reach                   
the specified timing. If the computing is not fast enough to process the data in real time the sequence must                    
be stopped for some time waiting for the processing to finish. This “lost time” is displayed by the system.                   
The lost time has no effect on an individual image because the system stops during two images however it                   
extends the acquisition time of the trial.  
This flag is used during the debug of a new set of parameters to verify if the computing can be performed in                      
real time. 
 
codeSamplingMode must be 2 or 4. The value 2 selects the acquisition mode ‘mode100BW’ and the                
value 4 the ‘mode200BW’ (see Vantage manual section 3.3.1 parameter ​sampleMode ​). The mode 200BW              
acquires 4 samples by wavelength, is the most generally used but consumes more memory and transfer                
time. The mode 100BW decimates the data by 2 at the cost of a minimal reduction in the bandwidth.  
 
inputFilter is a set of 21 coefficients of the input filter (see Vantage manual section 3.3.1 receive                 
object, ​InputFilter ​). The input filter must be adapted depending on the acquisition mode and the               
transducer bandwidth.  
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Processing software package 
4.1. Installation 
Download and unzip ‘​processing.zip’ ​(see Supplementary Software) into the folder          
C:\processing. ​This folder is divided in 3 folders  

\codes contains the user functions for data analysis, 
\examples provides the examples for each function, 
\dataSamples contains a set of data to explore the functions. 

 
The processing package is independent of the acquisition hardware and can be copied and run on any                 
computer with MATLAB 2015 or up. The dataSamples can be downloaded following this link              
http://doi.org/10.5281/zenodo.4382638​ (Zenodo repository). 
 
4.2. Data fus-structure format. 
We defined a fus-structure as a MATLAB structure containing this 4 fields: 

● Type a string with 4 possibilities: ‘plane’, ‘volume’, ‘fusplane’ or ‘fusvolume’, 
● Data a multidimensional matrix of float (single or double), 
● VoxelSize gives the voxel size of each dimension in µm, 
● Planes provides the position of the motor for each acquired plane. 

 
The ​miniScan software saves all the data as fus-structures. The Table 1 summarizes the dimension and                
size of the fields for each of the 4 possible types.  
 

 
Table 1. ​nx, ny, nz are the number of points in the x, y, z directions respectively. Nt is the number of time                       
points, dx, dy, dz are dimensions in µm in the x, y, z directions. Axis conventions are shown in​ ​Figure 1.b. 
 
4.3. Processing functions.  
To explore the processing function, move to the ‘examples’ folder and add a path to the codes and data                   
examples, 

>> cd C:\processing\examples <enter> 
>> addpath_codes_examples <enter> 

Examples 01 to 08 follow the order of the processing protocol. The processing functions are presented in                 
chronological order following the protocol.  
 

registration_ccf.m ​opens a graphic user interface to register the anatomical scan with the Allen Mouse               
CCF, see Figure 1.c. 

Syntax: 
registration_ccf(atlas,anatomic) 

registration_ccf(atlas,anatomic,Transf) 

Inputs: 
atlas, ​ the Allen Mouse CCF in ​allen_brain_atlas.mat,  
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Type Plane fusplane volume fusvolume 
Data dimensions 2 3 3 4 
Data size nz, nx nz, nx, nt nz, nx, ny nz, nx, ny, nt 
VoxelSize content dz, dx dz, dx dz, dx, dy dz,dx,dy 
Planes size 1 1 ny ny 
Acquisition mode Bmode, Doppler fUS single plane Doppler volume fUS volume 

http://doi.org/10.5281/zenodo.4382638


anatomic ​, a fus-strucure of type volume containing the anatomical scan, 
Transf ​, (optional) Affine transformation structure obtained from a previous execution of           
registration_ccf.m​. If this parameter is present, the data is transformed with the            
transformation ​Transf ​ before starting the manual registration.  

Output: 
A structure ​Transf is saved in a file ​Transformation.mat. This structure contains the             
affine transformation matrix (field ​M ​) and the view size (field ​size ​). 

Example: 
example01_registering.m 

Note:  
The registration is done using an affine transformation (translation, rotation and scaling). To             
rotate and translate the anatomical volume, click to the µDoppler image to activate the image               
for rotation and translation (the arrow pointer turns to a hand-pointer). Translate the volume              
by dragging the µDoppler image with the left-click of the mouse or rotate it with the                
right-click. Validate and apply the transformation to the volume by clicking to ‘Apply’. The              
scaling is performed through a scaling coefficient in the x, y or z axis. Save the                
transformation matrix in the file ‘​Transformation.mat ​’ by hitting the ‘Save’ button.  
 

data_stability.m​. The animal movements may induce motion artifacts with an abrupt increase of signal.              
This function displays the distribution of the average value in the images, adjusts a gaussian curve and                 
classifies as outliers all the images with an average value higher than 3 times the sigma of the gaussian                   
curve.  

Syntax: 
[outliers]=data_stability(scanfus) 

Inputs: 
scanfus ​, fus-structure of type fusvolume. 

Output: 
Outliers. ​It is a 2D matrix (ny by nt) of binary values indicating the position of the outliers                  
in the ny planes and the nt time frames, 1 is an outlier and 0 is accepted frame. This output                    
is used in the function ​image_rejection.m  

Example: 
example02_filter_average.m 

Note: 
This function displays a figure with the distribution of the averaged value of the frames and                
the gaussian fit. This figure must be manually controlled to verify that the distribution is               
normal, the number of outliers is below 10% and they are randomly distributed. A high               
number of outliers or a systematic concentration during a behavioral movement is a             
symptom of instability during the data acquisition.  
  

 
image_rejection.m ​rejects the images classified as outliers and replaces them by a linear interpolation of               
the accepted images.  

Syntax: 
scanfusFilter=image_rejection(scanfus,outliers) 

scanfusFilter=image_rejection(scanfus,outliers,method) 

Inputs: 
scanfus ​, fus-structure of type fusvolume. 
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outliers ​, a 2D matrix of size ny by nt (planes by time) indicating the outlier frames with 1                  
and accepted frames with 0 
method: is the optional interpolation method of the interp1 function of Matlab ​(‘linear’,             

‘nearest’, ‘previous’, ‘pchirp’ ​), default value is ​‘linear’ ​.  
Output: 

scanfusFiler ​, fus-structure of type fusvolume with the filtered data.  
Example: 

example02_filter_average.m 
 

map_correlation.m computes a Pearson’s correlation analysis of the functional data with a square             
stimulus. It allows in a minimal time to preview and control the quality of the evoked-brain activity during the                   
experimental sessions. 

Syntax: 
correlscan=map_correlation(scanfus,T1,T2) 

Inputs: 
scanfus, ​fus-structure of type fusvolume or fusplane 
T1, ​initial image of the stimulus, 
T2, ​last image of the stimulus. 

Output: 
correlscan ​, fus-structure of the same type as ​scanfus. ​It contains the correlation maps             
with the stimulus. The stimulus is computed as a square window convoluted by the              
hemodynamic response function. 

Example: 
example03_correlation.m 

 

register_data.m ​interpolates and registers a fus-structure of volume type with the Allen Mouse CCF using               
an affine transformation. 

Syntax: 
xreg=register_data(atlas,x,Transf) 

Inputs: 
atlas, ​ the Allen Mouse CCF in ​allen_brain_atlas.mat,  
x ​, a fus-strucure of type volume containing the functional scan, 
Transf, ​transformation structure obtained with the registering function. 

Output: 
xreg ​, a fus-structure of type volume with the registered data. 

Example: 
example03_correlation.m 

 

draw_borders.m displays the edges of the brain regions from the Allen Mouse CCF for coronal, sagittal or                 
transverse sections.  

Syntax: 
draw_borders(atlas,orientation,plane) 

Inputs: 
atlas, ​ the Allen Mouse CCF in ​allen_brain_atlas.mat,  
orientation is a string containing '​coronal ​', '​sagittal ​' or '​transverse ​' indicating the           
orientation of the section. 
plane, ​ the position of the selected plane to display. 
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Output: 
The edges of the regions from the selected plane are displayed in the current figure.  

Example: 
example03_correlation.m 

 

map_glm.m computes an activity map using a generalized linear model. It uses the Matlab function               
glmfit ​. 

Syntax: 
[estimator,tscore]=activity_glm(X, scanfus) 

Inputs:  
X, ​matrix of regressors with size (​nt,nreg ​). Each colon is a regressor of size (​nt               
samples) and the model has ​nreg ​ regressors.. 
scanfus, ​fus-structure of type fusvolume  

Output: 
estimator, ​4D matrix of size (​nz,nx,ny,nreg ​). It has the estimator of each regressor             
in each voxel.  
tscore, ​4D matrix of size (​nz,nx,ny,nreg ​). It has the t-score of each regressor in each               
voxel. Other statistics values are possible by simple modifications of the output. 

Example: 
example04_glm.m 

 

segmentation_ccf.m ​performs the interpolation, registration and segmentation of the functional scan in            
individual brain regions. 

Syntax: 
segmented=segmentation_ccf(atlas,scanfus,Transf) 

Inputs: 
atlas, ​ the Allen Mouse CCF in ​allen_brain_atlas.mat,  
scanfus ​, fus-structure of fusvolume type, 
Transf, ​the transformation matrix, obtained with the registration function  

Output: 
segmented, ​a structure with 2 fields (‘​Left ​’ and ‘​Right ​’) containing temporal traces for             
either the left or the right hemisphere. Each field is a 2D matrix of 509*nt. The 509 lines are                   
all brain regions from the Allen Mouse CCF and nt the number of time points.  

Example: 
example05_segmentation.m 

Note: 
The ​segmentation_ccf.m function interpolates and registers the scan to the atlas           
dimension and all the voxels from the same area are added together.  
 

select_brain_regions.m ​allows to select and group brain regions to provide a readable trace map of the                
region activity over time.  

Syntax: 
selectSegmented=select_brain_regions(atlas, fileRegions,segmented) 

Inputs: 
atlas, ​ the Allen Mouse CCF in ​allen_brain_atlas.mat,  
fileRegions ​, a sting with the name of a text file listing the selected regions, see details                
below, 
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segmented ​, structure of segmented regions provided by the ​segmentation_ccf.m         
function. 

Output: 
selectSegmented ​, a 2-field structure (‘.​Left ​’ and ‘.​Right ​’) containing temporal traces of           
regions selected or grouped as organized in the ​fileRegions file for both the left and right                
hemisphere. Each field is a 2D matrix of size (​Nregions,nt ​) where ‘​Nregions ​’ are the              
number of selected or grouped regions of ​fileRegions ​ file and ​nt ​the time points. 

Example: 
example05_segmentation 

Note: 
The ​fileRegions ​document is a text file with a list of acronyms of the selected regions                
from the Allen Mouse CCF. Each line in the document is a selected region. A ‘//’ comments                 
the text after it. Following characters are then ignored.  
This example selects 3 regions: 

LA // lateral amygdalar nucleus 

MOp // primary motor area 

MOs // secondary motor area 

 
Lines with multiple acronyms indicate the fusion of these regions into a single region. The               
new region takes the acronym of the first region from the list.  
This example fusions MOs into MOp: 

MOp MOs // region MOp is now MOp+MOs 

A new acronym of combined regions can be given when it follows ‘%’. Hereafter, MO merges                
MOp with MOs: 

%MO MOp MOs // new acronym MO merges MOp and MOs 
A readable list of brain regions is provided using the ​print_region_list.m ​ function.  

 
map_statistics.m​ performs the statistics of the segmented regions over multiple sessions.  

Syntax: 
[mapMean,mapTscore,mapPvalue]=map_statistics(data) 

Inputs: 
data, 4D matrix of size (​nx,ny,nz,nsessions ​) where ​nsessions the number of           
sessions. This matrix contains the activity maps of all the sessions built with             
example03_correlation.m ​. 

Output: 
mapMean, ​averaged map over the different sessions.  
mapTscore ​, t-score in each voxel. 
mapPvalue ​, p-value in each voxel. 

Example: 
example06_multisession_map.m 

 
segmentation_statistics.m​ performs the statistics of the segmented regions over multiple sessions.  

Syntax: 
segmented=segmentation_statistics(data, T1, T2) 

Inputs: 
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data, 3D matrix of size (​nreg,nt,nsessions ​) where ​nreg is the number of regions, ​nt              
the number of temporal samples and ​nsessions the number of sessions. This matrix is              
built with the output of function ​select_brain_regions.m ​. 
T1, ​initial image of the stimulus, 
T2, ​last image of the stimulus. 

Output: 
segmented, ​a structure with 2 fields (‘​Left ​’ and ‘​Right ​’) containing temporal traces for             
either the left or the right hemisphere. Each field is a 2D matrix of 509*nt. The 509 lines are                   
all brain regions from the Allen Mouse CCF and nt the number of time points.  

Example: 
example07_multisession_segmentation.m 

  
 
print_region_list.m generates 3 text files from the selected regions, the first ranges by alphabetical order,               
number of regions and volume of the region. This auxiliary function is useful to manage the list of selected                   
regions.  

Syntax: 
print_region_list(atlas, fileRegions) 

print_region_list(atlas) 

Inputs: 
atlas, ​ the Allen Mouse CCF in ​allen_brain_atlas.mat,  
fileRegions ​, a sting with the name of a text file listing the selected regions. 

Output: 
3 text files with the same names as ​fileRegions, ​extensions ​_number.txt,           

_alpha.txt ​and _volume.txt, containing the regions sorted alphabetically, by the          
number of regions or the volume of the region. If the argument ​fileRegions ​is absent, 3                
files named ​atlas_alpha.txt, atlas_number.txt and ​atlas_volume.txt are       
generated with the full list of all the atlas regions. 

Example: 
example08_print_region_list.m 
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APPENDIX 
Appendix 1. Stimulus example 
The stimulus is triggered by a character ‘T’ sent by a serial port that is caught by the slave computer to                     
generate the physical stimulus. Here are two examples on how to manage the stimulus.  
 
Option A. Visual stimulus.  
This example has been developed using the PsychoPy library that provides flexible functions to program               
different visual stimuli. The stimulus is generated by the slave computer. To install PsychoPy, follow the                
procedure 'Anaconda and Miniconda' described in ​https://www.psychopy.org/download.html  

● Copy the folder ​C:\miniScan\miscellaneous\visualStim of the master computer        
somewhere in the stimulus computer (i.e., ​C:\visualStim ​)  
Download and install Anaconda: 
https://www.anaconda.com/products/individual  

● Open 'Anaconda prompt' as administrator and run the following lines: 
cd C:\visualStim 

conda env create -n psychopy -f psychopy-env.yml 

  
To control if the installation has been correctly done perform the following steps  

● Open 'Anaconda prompt' and move to the folder:  
cd C:\visualStim 

● Activate PsychoPy:  
conda activate psychopy 

● run the test: 
python visual_stim_test.py 

If a grating stimulus is displayed, the installation is successful. 
 
The code consists of a loop waiting for command on a COM port. A full-screen black window is opened.                   
When a “trigger signal” is received (default value is ‘T’), the stimulus starts. When a “stop signal” (default                  
value is ‘1’), the full-screen window is closed. While no stop signal is received, the window will stay open                   
and ready to trig the stimulus. Parameters can be tuned in the code             
visual_stim_utils_bar_grating.py ​to generate various grating patterns. Edit the file by following           
the in-code documentation.  
 
To perform a visual stimulus with the ​miniScan ​ system, perform the following steps: 

● Connect master and slave computer with a serial.  
● Open the “​Device Manager​” in the master computer, select “Ports (COM & LPT)” and find the serial                 

port. Set the port in the ​miniScan ​ interface and open it. 
● Select the same serial port in the slave computer and set it in the line 12 of 

 ​visual_stim_utils_bar_grating.py. 
● In the slave computer, open 'Anaconda prompt' and run the following lines: 

cd C:\visualStim  
conda activate psychopy 
python visual_bar_grating.py 

● Test the trigger by hitting the ‘Force trigger’ button in the ​miniScan interface, a vertical grid                
stimulus should be displayed. 

 
Option B. TTL signal with microcontroller device. 
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This example uses an Arduino-Uno card to receive and convert the serial port trigger into a TTL signal. This                   
method generates a stimulus with other electronic devices through a TTL signal. 

● Install the Arduino IDE 
https://www.arduino.cc/en/Main/Software  

● Connect the Arduino card to a USB-port of the master computer and download the program               
‘​trigArduino.io’ ​. 

● Open the ‘​Device Manager ​’ in the master computer, check ‘​Ports(COM&LPT ​)’ and find the serial              
port number of the Arduino card (e.g., COM3).  

● Set this port as the stimulus port in the ​miniScan ​ software and open it. 
● Test the trigger by hitting the ‘Force trigger’ button in the ​miniScan ​interface. The Arduino LED                

flashes and a TTL signal is sent by pin8. 
 
Appendix 2. Ultrasound sequence 
The ultrasound sequence is detailed in Figure 3: 

● Emission/Reception event in which a plane wave is emitted and backscattered echoes of the brain               
tissue received between 3.9 and 16.25 µs after emission. This period is required to record echoes                
from 3 to 10mm depth. A dead time is added to reach a total time of 92.5 µs (10.5 kHz; Figure 3a). 

● The E/R block is repeated 3 times to average the acquisition and thus, reduce the single to noise                  
ratio. The total duration of a plane wave acquisition rises to 285.7 µs (3.5 kHz). The signal is                  
beam-formed to produce a plane-wave ultrasound image (Figure 3.b). 

● A set of 7 tilted plane-wave images (-6, -4, -2, 0, 2, 4, 6) generated in 2 ms (500 Hz) are coherently                      
added to produce a high-quality compound image (Figure 3.c). 

● 250 compound images (50 in fast mode) are concatenated into a single Doppler image in 0.5 s (0.1                  
s in fast mode; Figure 3.d). 

● This set of 250 compound images is filtered to extract the signal coming from the blood. The filter                  
consists in a 15-Hz high-pass filter and a SVD filter that eliminates 10% of the singular values. The                  
Doppler image is then computed as the intensity of the filtered signal.  

● A functional trial is composed of 70 Doppler images (35s in normal mode and 7 s in fast mode). A                    
trigger out is sent at image 35 (17.5 s in normal mode, 3.5 s in fast mode) (Figure 3.e). 

  
 

 
Figure 3. Ultrasound sequence. 
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