Supplementary information

Spatial visualization of comprehensive brain neurotransmitter systems and neuroactive substances by selective in situ chemical derivatization mass spectrometry imaging

In the format provided by the authors and unedited

Supplementary Information

Spatial visualization of comprehensive brain neurotransmitter systems and neuroactive substances by selective in situ chemical derivatization mass spectrometry imaging

Reza Shariatgorji^{1,2,6}, Anna Nilsson^{1,2,6}, Elva Fridjonsdottir¹, Nicole Strittmatter³, Andreas Dannhorn³, Per Svenningsson⁴, Richard J.A. Goodwin³, Luke R. Odell⁵, Per E. Andrén^{1,2}

- ¹ Department of Pharmaceutical Biosciences, Medical Mass Spectrometry Imaging, Uppsala University, Uppsala, Sweden
- ² Science for Life Laboratory, Spatial Mass Spectrometry, Uppsala University, Uppsala, Sweden
- ³Imaging & Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
- ⁴Department of Clinical Neuroscience, Section of Neurology, Karolinska Institutet, Stockholm, Sweden
- ⁵ Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- ⁶ These authors contributed equally
- Corresponding author, email: per.andren@farmbio.uu.se

Supplementary Figures

Supplementary Figure 1. Derivatization reaction scheme of the DPP and FMP matrices.

Overview of the derivatization reactions using DPP (left side) that reacts with primary amines and FMP (right side) that reacts with primary amines and/or hydroxy phenols. Dopamine (DA) is used as an example for the reactions. FMP-8 ($R^1 = Me$, $R^2 = Br$), FMP-9 ($R^1 = Et$, $R^2 = H$) and FMP-10 ($R^1 = Me$, $R^2 = H$).

Supplementary Figure 2. Optimization of FMP-10 application protocol.

Detection of the neurotransmitters dopamine (DA), norepinephrine (NE), and serotonin (5-HT) was optimized using different number of spray passes and different concentrations of FMP-10. FMP-10 (5 mg, 10 mg, or 20 mg) was added to 5.5 ml of 70 % ACN and different number of passes (5, 10, 15, 20, 30 or 60) were applied using the TM sprayer. Left panels show ion distribution images of DA (scaled to 80% of max intensity), NE (scaled to 40% of max intensity) and 5-HT (scaled to 40% of max intensity) from coronal rat brain tissue sections (distance from bregma 0.48 mm)¹ using different optimization parameters. Right panels show ion distribution images of DA (scaled to 40% of max intensity), NE (scaled to 30% of max intensity), and 5-HT (scaled to 40% of max intensity) from coronal rat brain sections (distance from bregma 5.6 mm)¹ using different optimization parameters.

Supplementary Figure 3. Brain tissue integrity after chemical derivatization.

Rat brain tissue sections are derivatized by \mathbf{a} , DPP and \mathbf{b} , FMP-10. Optical images of Nissl-stained tissue sections show preservation of the tissue integrity after washing off \mathbf{c} , DPP and \mathbf{d} , FMP-10. Substructures of hippocampus are clearly preserved after derivatization by \mathbf{e} , DPP and \mathbf{f} , FMP-10.

Supplementary Tables

Supplementary Table 1. Overview of the mass tags added to molecules containing a primary amine and/or hydroxy phenols upon derivatization using DPP, FMP-8, FMP-9, and FMP-10.

Reactive matrix	Elements added (Da)	Elements added (Da)	Elements added (Da)
FMP-8	$C_{20}H_{13}NBr^{+}$ (346.0226)	$C_{39}H_{23}N_2Br_2^+$ (677.0223) ^a	$C_{40}H_{25}N_2Br_2^+(691.0379)^{b}$
FMP-9	$C_{21}H_{16}N^{+}$ (282.1277)	$C_{40}H_{27}N_2^+(535.2169)^{c}$	$C_{42}H_{31}N_{2}^{+}(563.2482)^{b}$
FMP-10	$C_{20}H_{14}N^+$ (268.1121)	$C_{39}H_{25}N_2^+$ (521.2012) ^a	$C_{40}H_{27}N_2^+$ (535.2169) ^b
DPP	C ₁₇ H ₁₁ ⁺ (215.085526)	N/A	N/A

^a +2[FMP-8]-CH₃⁺ or +2[FMP-10]-CH₃⁺, ^b +2[FMP-8]-H⁺ or +2[FMP-9]-H⁺ or +2[FMP-10]-H⁺,

^c+2[FMP-9]-C₂H₅⁺

Matrix	Analyte	Normalization	Linear regression (r ²)	LOD (pmol/mg)
FMP-10	HVA	RMS	0.997994	12.24
FMP-10	HVA	IS	0.999429	6.52
FMP-10	DA (single)	RMS	0.999269	2.78
FMP-10	DA (single)	IS	0.999969	0.58
FMP-10	DA (double)	RMS	0.998928	3.36
FMP-10	DA (double)	IS	0.999748	1.63
DPP	GABA-d ₆	RMS	0.987321	6.83
FMP-10	$GABA-d_6$	RMS	0.99622	132.82
DPP	$DA-d_4$	RMS	0.998613	5.08
FMP-10	DA-d ₄ (single)	RMS	0.995424	2.31
FMP-10	DA-d4 (double)	RMS	0.981629	4.66
DPP	3-MT- <i>d</i> 4	RMS	0.999383	3.06
FMP-10	3-MT- d_4 (single)	RMS	0.999661	2.33

Supplementary Table 2. The linearity and limit of detection for different neurotransmitters and neurotransmitter metabolites using DPP and FMP-10.

Data were extracted using RMS or IS normalization. LOD was calculated using the LINEST function in Excel where LOD = 3.3*(Sy/S), where Sy is the standard deviation of the response of the curve and S is the slope of the calibration curve. Data were extracted using msIQuant ^{2,3}. The calibration curves were prepared as described previously ⁴. Raw data is available in Supplementary Data. Abbreviations: 3-MT, 3-methoxytyramine, DA, dopamine; DPP, 2,3-diphenyl-pyranylium; FMP-10, 4-(anthracen-9-yl)-2-fluoro-1-methylpyridin-1-ium iodide; GABA, γ -aminobutyric acid; HVA, homovanillic acid; IS, internal standard; LOD, limit of detection; RMS, root-mean-square.

Compound	М	M+DPP	M+FMP	M+2FMP	Deriva	tization
	Ν	Ionoisotopic	e mass (<i>m/z</i>)	compound		ound
Dopaminergic pathway						
Tyrosine	181.0739	396.1594	449.1860	702.2751	-	FMP
L-3,4-dihydroxyphenylalanine (L-DOPA)	197.0688	412.1543	465.1809	718.2700	DPP(*)	FMP(*)
Dopamine (DA)	153.0790	368.1645	421.1911	674.2802	DPP	FMP
3-Methoxytyramine (3-MT)	167.0946	382.1802	435.2067	688.2959	DPP	FMP
3,4-Dihydroxyphenylacetaldehyde (DOPAL)	152.0473	-	420.1594	673.2486	-	FMP
Homovanillin	166.0624	-	434.1745	-	-	FMP
3,4-Dihydroxyphenylacetic acid (DOPAC)	168.0423	-	436.1543	689.2435	-	FMP
Homovanillic acid (HVA)	182.0579	-	450.1700	-	-	FMP
3-O-Methyldopa	211.0845	426.1700	479.1965	732.2857	-	FMP(*)
Norepinephrine (NE)	169.0739	384.1594	437.1860	690.2751	DPP	FMP
Epinephrine (EP)	183.0895	-	451.2016	704.2908	-	FMP
3,4-Dihydroxyphenylglycol (DOPEG)	170.0579	-	438.1700	-	-	FMP
3-Methoxy-4-hydroxyphenylglycol (MOPEG)	184.0736	-	452.1856	-	-	FMP
Serotonergic pathway						
Tryptophan	204.0899	419.1754	472.2020	-	-	FMP
Serotonin (5-HT)	176.0950	391.1805	444.2070	697.2962	DPP	FMP
5-Hydroxyindoleacetic acid (5-HIAA)	191.0582	-	459.1703	-	-	FMP
5-Hydroxytryptophol (5-HTOL)	177.0790	-	445.1911	-	-	FMP
5-Hydroxyindole aldehyde (5-HIAL)	175.0633	-	443.1755	-	-	FMP
Amino acids and other metabolites						
Ethanolamine	61.0528	276.1383	329.1648	-	DPP	FMP
Glycine	75.0320	290.1176	343.1441	-	DPP	FMP
Alanine	89.0477	304.1332	357.1598	-	DPP	FMP
γ-aminobutyric acid (GABA)	103.0633	318.1489	371.1754	-	DPP	FMP
Serine	105.0426	320.1281	373.1547	-	-	FMP
Valine	117.0790	332.1645	385.1911	-	DPP	FMP
Threonine	119.0582	334.1438	387.1703	-	DPP	FMP
Phenethylamine	121.0891	336.1747	389.2012	-	DPP	FMP
Taurine	125.0147	340.1002	393.1267	-	DPP	FMP
Leucine/Iso-leucine	131.0946	346.1802	399.2067	-	DPP	FMP
Aspartate	133.0375	348.1230	401.1496	-	-	FMP
Tyramine	137.0841	352.1696	405.1961	658.2853	DPP	FMP
Glutamine	146.0691	361.1547	414.1812	667.2704	DPP	FMP
Lysine	146.1055	361.1911	414.2176	667.3068	DPP	FMP
Histidine	155.0695	370.1550	423.1816	676.2707	DPP	FMP

Supplementary Table 3. Summary of detected neurotransmitters, metabolites and amino acids in brain tissue sections following derivatization with DPP or FMP-10.

Tryptamine	160.1000	375.1856	428.2121	-	DPP	FMP
Phenylalanine	165.0790	380.1645	433.1911	-	DPP	FMP
Arginine	174.1117	389.1972	442.2238	-	-	FMP
6-Hydroxymelatonin	248.1161	-	516.2282	-	-	FMP
Agmatine	130.1218	345.2074	398.2339	-	DPP	FMP
Creatine	131.0695	346.1545	399.1815	-	DPP	FMP
Creatinine	113.0589	328.1444	381.1710	-	-	FMP
Cystein	121.0197	336.1053	389.1318	-	-	FMP
Formiminoglutamic acid	174.0641	389.1496	442.1761	-	-	FMP
Histamine	111.0796	326.1652	379.1917	-	DPP	FMP
Putrescine	88.1000	303.1856	356.2121	-	DPP	FMP
Spermidine	145.1579	360.2434	413.2670	666.3592	DPP	FMP
Homocarnosine	240.1222	455.2078	508.2343	761.3235	DPP	FMP
Spermine	202.2157	417.3013	470.3278	-	DPP	FMP
Adenine	135.0545	350.1400	403.1666	-	DPP	FMP
Alpha-tocopherol	430.3811	-	698.4932	-	-	FMP
Carnosine	226.1066	-	494.2187	-	-	FMP
Vanillactic acid	212.0685	-	480.1805	-	-	FMP
Vanilpyruvate	210.0528	-	478.1649	-	-	FMP

(*) only detected after in vivo L-dopa administration.

Supplementary References

- 1 Paxinos, G. & Franklin, K. B. J. *Paxinos and Franklin's the mouse brain in stereotaxic coordinates.* Edn. 5, (Elsevier Academic Press, 2019).
- 2 Källback, P., Nilsson, A., Shariatgorji, M. & Andren, P. E. msIQuant Quantitation Software for Mass Spectrometry Imaging Enabling Fast Access, Visualization, and Analysis of Large Data Sets. *Anal. Chem.* **88**, 4346-4353 (2016).
- 3 Källback, P., Shariatgorji, M., Nilsson, A. & Andren, P. E. Novel mass spectrometry imaging software assisting labeled normalization and quantitation of drugs and neuropeptides directly in tissue sections. *J. Proteomics* **75**, 4941-4951 (2012).
- 4 Shariatgorji, M. *et al.* Comprehensive mapping of neurotransmitter networks by MALDI-MS imaging. *Nat. Methods* **16**, 1021-1028 (2019).