Supplementary information

Rapid ordering of barcoded transposon insertion libraries of anaerobic bacteria

In the format provided by the authors and unedited

Supplementary Information for "Rapid ordering of barcoded transposon insertion libraries of anaerobic bacteria"

Anthony L. Shiver¹, Rebecca Culver², Adam M. Deutschbauer^{3,4}, Kerwyn Casey Huang^{1,5,6,*}

 ¹Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
²Department of Genetics, Stanford University, Stanford, CA 94305, USA
³Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
⁴Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
⁵Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
⁶Chan Zuckerberg Biohub, San Francisco, CA 94158

*Correspondence: kchuang@stanford.edu

The quantitative accuracy of Bar-seq improves probabilistic solutions to barcode locations.

- a) The log₂(ratio of row/column reads) should be a Voigt distribution centered around -0.585² (red dotted line). The fitted Voigt distributions for Bar-seq (blue, this study) and ST-PCR (black, our re-analysis of previous work²) were normalized to an area under the curve of 1 and plotted.
- b) The fitted Voigt distributions in (a) were used to predict the likelihood of row and column solutions for all mutant strains that appeared in exactly two row and two column pools. There are two unique solutions to this 2x2 pool inclusion pattern. The log of the ratio of the probabilities for the more (*p*₁) and less (*p*₂) likely solution (log₂(*p*₁/*p*₂)) is plotted for Bar-seq (blue, *n*=169) and ST-PCR (black, *n*=1451). The red dashes are the medians of the distributions, the edges of the boxes are the upper and lower quartiles, whisker length is 1.5 times the inter-quartile range, and the outliers are plotted individually. Bar-seq has a significantly higher log ratio, signifying better predictions.

Survival of anaerobic species during sorting depends on the presence of antioxidants.

- a) Six human gut isolates and a lab strain of *E. coli* survived sorting and regrowth in commercial media. Each strain was grown in a commercial formulation of media with added supplements. *Escherichia coli* BW25113, *Parabacteroides johnsonii* CL02T12C29, *Bacteroides finegoldii* CL09T03C10, and *Lactobacillus reuteri* CF48-3A were grown in Gifu Anaerobic Medium (GAM) supplemented with 1.5 µM hemin, 30 µM menadione, 6 mM arginine, and 1 mM tryptophan. *Clostridium symbiosum* WAL-14163 was grown in Reinforced Clostridial Medium (RCM) supplemented with 1.5 µM hemin, 30 µM menadione, 6 mM arginine, and 1 mM tryptophan. *Slifidobacterium breve* DSM20213 and *Bifidobacterium longum* NCC2705 were grown in de Mann, Rogosa, Sharp (MRS) medium. Each strain was sorted into five 96-microwell plates. Dark circles are the number of blank wells in one 96-microwell plate after outgrowth. Red lines are the median value for the five replicate 96-microwell plates. All strains except *E. coli* and *L. reuteri* are obligate anaerobes¹. Phylogenetic distances were extracted from the TimeTree database⁴.
- b) Two highly oxygen-sensitive strains, *Clostridium symbiosum* WAL-14163 and *Clostridium innocuum* 6_1_30, were sorted and grown in media with an antioxidant. For both strains, we used an alternative formulation of RCM with no cysteine and no agar. We then added either no antioxidant, 4 mM thioglycolic acid, 114 mM ascorbic acid, or 5 mM cysteine. Dark circles are the number of blank wells in one 96-microwell plate after outgrowth. Red lines are the median value for the four replicate 96-microwell plates. It is possible to achieve high levels of viability for both of the strains by using ascorbic acid for *C. innocuum* and cysteine for *C. symbiosum*.

B. thetaiotaomicron produces hydrogen sulfide from exogenous cysteine.

- a) B. thetaiotaomicron produces hydrogen sulfide proportional to the concentration of cysteine added to the medium. The original recipe for BHIS included supplementation with 8 mM cysteine. BHIS media with a range of cysteine concentrations were prepared and inoculated with B. thetaiotaomicron. After 24 h of growth, a hydrogen sulfide test strip was held over the culture for 5 s. Reaction of hydrogen sulfide with lead acetate in the strips led to black discoloration. Production of hydrogen sulfide by B. thetaiotaomicron in response to added cysteine caused us to investigate the effect of dropping cysteine out of the recipe for BHIS for the sorting procedure.
- b) Anaerobic growth of *B. thetaiotaomicron* is not strongly impacted by the addition of cysteine. A 96-well microwell plate was filled with BHIS and increasing levels of cysteine (0-20 mM). The media were inoculated with *B. thetaiotaomicron* VPI-5482 and growth was monitored by reading optical density at 600 nm. The growth curves show the median value for (*n*=8) independent measurements.
- c) The maximum growth rate (μ_{max}) (top) and maximum OD₆₀₀ (OD_{max}) (bottom) were extracted from individual growth curves (*n*=8). The individual data points (circles) and median (solid line) are plotted for each concentration of cysteine. The omission of cysteine (red circles) did not significantly alter the maximum growth rate or the maximum OD₆₀₀. The only significant comparison between the no-cysteine condition and the cysteine-added conditions was with 20 mM cysteine for the OD_{max} parameter (multiple hypothesis corrected one-way ANOVA, *p*=6x10⁻⁵).

Growth properties of the 40-plate B. thetaiotaomicron barcoded transposon insertion library.

- a) The distribution of OD₆₀₀ measurements in the cryostocks of the ordered library revealed a surprisingly large population of low OD₆₀₀ wells. A heuristic cutoff of 0.25 (red dotted line) was chosen to discriminate between high (grey distribution) and low OD₆₀₀ (red distribution) in the library. Tick marks at the top of the distribution denote the OD₆₀₀ of wells that were chosen for investigation. Black tick marks record wells in which cells were found by microscopy, while the two red tick marks represent the OD₆₀₀ of wells in which no cells could be found in a 1-µL aliquot.
- b) Cells were found using microscopy in most of the low OD₆₀₀ wells in the library, even in wells with OD₆₀₀<0.01, indicating that many of the low OD₆₀₀ wells are not due to a problem with sorting. Scale bar: 5 µm. The cryostock OD₆₀₀ in the library is shown for each image/well. Images were acquired with a Nikon Ti-E outfitted with a 100X (NA 1.4) objective and an Andor Zyla 5.5 sCMOS camera. Micromanager was used for image acquisition⁵.
- c) Growth curves after recovery from the cryostock showed that many of the low OD_{600} wells can recover to wild-type densities. The thickness of the line is proportional to the log of the cryostock OD_{600} . All curves represent the mean of (*n*=4) independent measurements. The horizontal line at an OD_{600} of 0.001 represents the detection limit of the plate reader. The two wells in which cells were not detected did not recover during the 72 h period of monitoring and are not plotted.
- d) Growth parameters extracted from the recovery curves (*n*=4) show that the transposon insertion strains isolated from low OD₆₀₀ wells have maximum OD₆₀₀ values (OD_{max}) and maximum growth rates (μ_{max}) similar to wild-type. As expected, the lag phase (*λ*) of the cultures was negatively correlated with the cryostock OD₆₀₀ in the library (Pearson's *r*=-0.94, *p*=6x10⁻²⁹).

PCR validations of 15 transposon insertion strain assignments within the ordered library.

PCRs were used to confirm that the protocol correctly assigns transposon insertion strains to locations in the ordered library. PCRs were performed with a universal outward facing primer that bound within the Erm cassette and a specific reverse primer that bound to the genome near the insertion point.

a) Seven PCR validations of wells with a single strain with a single transposon insertion. The top label denotes the transposon insertion location that was targeted using a position-(orientation) notation. The bottom label records the culture used as input in the PCR. Either an overnight culture of wild-type *B. theta* VPI-5482 or an aliquot of the cryostock in the ordered library at the position indicated was used as template for the PCR. For positions in the library, P# abbreviates plate number, the letter designates row A-H in the 96-well format, and the number designates column 1-12 in the 96-well format. All seven wells contained the assigned transposon insertion.

b) Eight PCR validations of wells with a single strain with more than one insertion. Two insertion sites were checked for each well. The lanes are labeled as in (a). All eight wells contained both of the tested transposon insertions.

Supplementary Results

Survival of anaerobic species during sorting depends on the presence of antioxidants

To determine whether we could use cell sorting to generate ordered libraries of anaerobic bacteria, we first sought to quantify the ability of bacteria from the gut microbiota, particularly strict anaerobes, to survive the process of cell sorting. We chose two Bacteroidetes (*Bacteroides finegoldii* and *Parabacteroides johnsonii*), two Firmicutes (*Lactobacillus reuteri* and *Clostridium symbiosum*), and two Actinobacteria (*Bifidobacterium breve* and *Bifidobacterium longum*) to test survival of the sorting process; both *Bifidobacterium* species, *C. symbiosum*, *P. johnsonii*, and *B. finegoldii* are all obligate anaerobes while *L. reuteri* is a facultative anaerobe¹. As a control, the facultative anaerobe *Escherichia coli* BW25113 was also sorted. Strains were grown and sorted into commercial media formulations of MRS (*B. breve* and *B. longum*), RCM supplemented with hemin, menadione, tryptophan, and arginine (*C. symbiosum*), and GAM supplemented with hemin, menadione, tryptophan, and arginine (*B. finegoldii*, *L. reuteri*, and *E. coli*).

All plates and cultures spent 1-1.5 h in an aerobic atmosphere while single cells were sorted into five 96microwell plates for each strain. We counted the number of blank wells after outgrowth in each 96-well plate as a proxy for the number of single cells that did not survive the sorting procedure. We found that even the strict anaerobes survived the aerobic exposure long enough to complete the cell sorting protocol and regrow at high frequency when returned to anaerobic conditions. The fraction of blank wells after sorting varied across species, with *C. symbiosum* having the highest fraction of blank wells (**Supplementary Figure 2a**); nonetheless, at least 89% of *C. symbiosum* cells grew after sorting.

Each of the commercial media formulations we used contained a significant concentration of cysteine, which we hypothesized was acting as an antioxidant to protect the cells during their transient exposure to oxygen. To test this hypothesis and explore the utility of alternative antioxidants, we sorted *C. symbiosum* and *Clostridium innocuum* in formulations of RCM in which cysteine had been either omitted or replaced with another antioxidant. We tested cysteine, thioglycolic acid (a component of GAM), and ascorbic acid for their ability to protect the two species. In the absence of any added antioxidants, the survival of both species was greatly reduced, consistent with their sensitivity to oxygen (**Supplementary Figure 2b**). Both species were protected by the addition of antioxidants. Interestingly, *C. innocuum* preferred ascorbic acid over cysteine while *C. symbiosum* had the opposite preference (**Supplementary Figure 2b**). Thioglycolic acid was the worst performing antioxidant of those tested for both species (**Supplementary Figure 2b**). It remains to be determined if the optimal bacterium-antioxidant pair is idiosyncratic or if there is a general, as yet unidentified, protectant that can be applied across species. Nonetheless, it was straightforward to achieve high survival frequency for both of these strict anaerobes.

B. thetaiotaomicron produces hydrogen sulfide from exogenous cysteine

To test whether *B. thetaiotaomicron* produces hydrogen sulfide from cysteine, we grew cultures of *B. thetaiotaomicron* to saturation in BHI supplemented with hemin (BHIS) and increasing concentrations of added cysteine, from 1-20 mM. We used test strips to detect the presence of hydrogen sulfide in the headspace of the cultures. Reaction of hydrogen sulfide with lead acetate in the test strip led to a black lead sulfide product. Hydrogen sulfide was produced proportionally to the concentration of added cysteine (**Supplementary Figure 3a**).

We then tested growth of *B. thetaiotaomicron* in BHIS as a function of added cysteine and found that cysteine could be left out of the BHIS recipe without adverse effects on anaerobic growth. The growth curve of *B. thetaiotaomicron* grown in BHIS without cysteine was similar to BHIS with cysteine added (**Supplementary Figure 3b**). Calculation of the maximum growth rate and the maximum OD₆₀₀ (optical density at 600 nm) also showed no significant differences between BHIS with or without added cysteine (**Supplementary Figure 3c**).

Limited growth in certain wells is likely due to transient oxygen stress during sorting

After aliguoting and storing the 40-plate library, we measured the OD_{600} after ~60 h of growth. In 14% of the wells, the OD₆₀₀ was <0.25, but in many cases was significantly higher than the expected OD₆₀₀ of a blank well (Supplementary Figure 4a). Microscopic examination of the cultures in these low OD₆₀₀ wells revealed that the majority still had detectable culture densities (Supplementary Figure 4a,b). Furthermore, the cultures in these low OD₆₀₀ wells could be recovered by outgrowth (Supplementary Figure 4c), with a longer lag time as the main feature that distinguished them from wells that exhibited high OD₆₀₀ values during initial outgrowth (Supplementary Figure 4d). To test if the low OD₆₀₀ was connected to a biological process disrupted by the transposon insertions, we looked for a correlation between low OD₆₀₀ and the disrupted genes of the transposon insertion strains. Of the 61 genes that had more than one insertion strain isolated as a pure culture in the ordered library, we found that one strain having a low OD₆₀₀ did not make it more likely that the second also had a low OD_{600} ; in fact, there was zero overlap between pairwise comparisons (Fisher's exact test: p=0.6, odds ratio=0). We conclude that low OD₆₀₀ wells in the B. thetaiotaomicron ordered library are not due to a fitness defect of the mutant that was sorted. Instead, we hypothesize that the transient exposure to oxygen during sorting temporarily slows growth for a fraction of the sorted wells. The presence of these low OD₆₀₀ wells could be a useful indication that post-sort recovery conditions of a strain can be further optimized.

The quantitative accuracy of Bar-seq improves probabilistic solutions to barcode locations

The pool designs used here and elsewhere^{2,3} are optimized for the time and effort required to pool the libraries. If a barcode occurs in exactly one of each of the plate, row, and column pools, then for our pool design it has a definite solution for a single location in the library. If a strain occurs more than once in the library, then its barcode will appear in more than one of each of the different pool types and, with our pool design, there will be multiple possible solutions for its locations in the library. To predict the correct locations of these repeated transposon insertion strains, a previous study² developed a probabilistic solution that we implemented here.

This approach uses the relative read counts of a barcode across pools to predict the most likely solution out of all alternatives. Briefly, the ratio of reads of the same barcode in two pool types (plate, row, or column) should depend only on the number of strains added to each pool. For example, the ratio of reads for a barcode in its row and column pools should be 8/12. When choosing between alternative combinations of pools, if the ratio of reads for one combination is closer to this ideal ratio than the alternatives, then it is the more likely solution. In reality, the ratio of reads is a distribution centered approximately around this ideal ratio due to both systematic and random noise introduced during the amplification process. A tighter distribution will be more predictive when choosing alternatives.

Because our pool design (plate, row, column) and the pool design from a previous study using ST-PCR (plate-row, plate-column, row, column)² share the row and column pool types, we were able to directly compare Bar-seq to ST-PCR according to their ability to distinguish between alternative solutions for indefinite strain locations. We first examined the distribution of row versus column read ratios for definite solutions in the two libraries. The log₂(row/column read ratio) should be a Voigt distribution centered around -0.585². We found that the Bar-seq method (this study) resulted in a tighter distribution than ST-PCR (reanalyzed data from previous work²) (**Supplementary Figure 1a**), indicating that Bar-seq better preserved read count information contained in the genomic DNA pools.

We next examined the subset of barcodes (this study, n=169) or transposon insertion locations (reanalyzed data from previous work², n=1451) that were detected in exactly two row and two column pools. There are two unique solutions that could give rise to this pool inclusion pattern. The log ratio of the probabilities of the more (p_1) and less (p_2) likely solutions is a measure of the ability of read ratio information to predict a correct solution for the mutants. The Bar-seq method outperformed ST-PCR (Wilcoxon rank sum test: $W=2x10^5$, $p=7x10^{-59}$) (**Supplementary Figure 1b**).

We conclude that Bar-seq is more robust than ST-PCR and more cost-effective than INSeq and Tn-seq, making it the preferred sequencing method for locating mutants within an ordered library.

Supplementary Tables

Oligo	Oligo sequence	PAGE	Index	Index	Description
name		purified	name	sequence	
Barseq_P1	AATGATACGGCG ACCACCGAGATC	yes			Common primer for
					"IruSeq-
					Indexed
					bar-seq
	AGCGTACG				
Barseg P2	CAAGCAGAAGAC	ves	IT001	ATCACG	TruSeq-
IT 001	GGCATACGAGAT	J			derived
—	CGTGATGTGACT				indexed Bar-
	GGAGTTCAGACG				seq primer
	TGTGCTCTTCCG				
	ATCTGATGTCCA				
	CGAGGTCTCT				
Barseq_P2	CAAGCAGAAGAC	yes	IT002	CGATGT	TruSeq-
_IT 002	GGCATACGAGAT				derived
	ACATCGGTGACT				indexed Bar-
	GGAGTTCAGACG				seq primer
	TGTGCTCTTCCG				
	ATCTGATGTCCA				
	CGAGGICICI				
Barseq_P2	CAAGCAGAAGAC	yes	11003	TTAGGC	IruSeq-
_11 003	GGCATACGAGAT				derived indexed Der
	GUUTAAGIGAUT				indexed Bar-
	TETECTETTECE				seq primer
	ATCTGATGTCCA				
	CGAGGTCTCT				
Barseg P2		Ves	IT004	TGACCA	TruSeq-
IT 004	GGCATACGAGAT	yee			derived
	TGGTCAGTGACT				indexed Bar-
	GGAGTTCAGACG				seg primer
	TGTGCTCTTCCG				
	ATCTGATGTCCA				
	CGAGGTCTCT				
Barseq_P2	CAAGCAGAAGAC	yes	IT005	ACAGTG	TruSeq-
_IT 005	GGCATACGAGAT	-			derived
	CACTGTGTGACT				indexed Bar-
	GGAGTTCAGACG				seq primer
	TGTGCTCTTCCG				
	ATCTGATGTCCA				
	CGAGGTCTCT				
Barseq_P2	CAAGCAGAAGAC	yes	IT006	GCCAAT	TruSeq-
_11 006	GGCATACGAGAT				derived
	AIIGGCGIGACT				indexed Bar-
	GGAGTICAGACG				seq primer
	AICIGAIGICCA				
	CGAGGICICI				

Supplementary Table 1: Oligos used for Bar-seq PCR amplification in steps 76-79.

Barseq_P2 _IT 007	CAAGCAGAAGAC GGCATACGAGAT GATCTGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT007	CAGATC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 008	CAAGCAGAAGAC GGCATACGAGAT TCAAGTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT008	ACTTGA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 009	CAAGCAGAAGAC GGCATACGAGAT CTGATCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT009	GATCAG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 010	CAAGCAGAAGAC GGCATACGAGAT AAGCTAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT010	TAGCTT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 011	CAAGCAGAAGAC GGCATACGAGAT GTAGCCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT011	GGCTAC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 012	CAAGCAGAAGAC GGCATACGAGAT TACAAGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT012	CTTGTA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 013	CAAGCAGAAGAC GGCATACGAGAT TTGACTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT013	AGTCAA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 014	CAAGCAGAAGAC GGCATACGAGAT GGAACTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT014	AGTTCC	TruSeq- derived indexed Bar- seq primer

Barseq_P2 _IT 015	CAAGCAGAAGAC GGCATACGAGAT TGACATGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT015	ATGTCA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 016	CAAGCAGAAGAC GGCATACGAGAT GGACGGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT016	CCGTCC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 017	CAAGCAGAAGAC GGCATACGAGAT CTCTACGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT017	GTAGAG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 018	CAAGCAGAAGAC GGCATACGAGAT GCGGACGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT018	GTCCGC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 019	CAAGCAGAAGAC GGCATACGAGAT TTTCACGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT019	GTGAAA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 020	CAAGCAGAAGAC GGCATACGAGAT GGCCACGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT020	GTGGCC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 021	CAAGCAGAAGAC GGCATACGAGAT CGAAACGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT021	GTTTCG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 022	CAAGCAGAAGAC GGCATACGAGAT CGTACGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT022	CGTACG	TruSeq- derived indexed Bar- seq primer

Barseq_P2 _IT 023	CAAGCAGAAGAC GGCATACGAGAT CCACTCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT023	GAGTGG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 024	CAAGCAGAAGAC GGCATACGAGAT GCTACCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT024	GGTAGC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 025	CAAGCAGAAGAC GGCATACGAGAT ATCAGTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT025	ACTGAT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 026	CAAGCAGAAGAC GGCATACGAGAT GCTCATGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT026	ATGAGC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 027	CAAGCAGAAGAC GGCATACGAGAT AGGAATGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT027	ATTCCT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 028	CAAGCAGAAGAC GGCATACGAGAT CTTTTGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT028	CAAAAG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 029	CAAGCAGAAGAC GGCATACGAGAT TAGTTGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT029	CAACTA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 030	CAAGCAGAAGAC GGCATACGAGAT CCGGTGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT030	CACCGG	TruSeq- derived indexed Bar- seq primer

Barseq_P2 _IT 031	CAAGCAGAAGAC GGCATACGAGAT ATCGTGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT031	CACGAT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 032	CAAGCAGAAGAC GGCATACGAGAT TGAGTGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT032	CACTCA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 033	CAAGCAGAAGAC GGCATACGAGAT CGCCTGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT033	CAGGCG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 034	CAAGCAGAAGAC GGCATACGAGAT GCCATGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT034	CATGGC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 035	CAAGCAGAAGAC GGCATACGAGAT AAAATGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT035	CATTTT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 036	CAAGCAGAAGAC GGCATACGAGAT TGTTGGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT036	CCAACA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 037	CAAGCAGAAGAC GGCATACGAGAT ATTCCGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT037	CGGAAT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 038	CAAGCAGAAGAC GGCATACGAGAT AGCTAGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT038	CTAGCT	TruSeq- derived indexed Bar- seq primer

Barseq_P2 _IT 039	CAAGCAGAAGAC GGCATACGAGAT GTATAGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT039	CTATAC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 040	CAAGCAGAAGAC GGCATACGAGAT TCTGAGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT040	CTCAGA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 041	CAAGCAGAAGAC GGCATACGAGAT GTCGTCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT041	GACGAC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 042	CAAGCAGAAGAC GGCATACGAGAT CGATTAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT042	TAATCG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 043	CAAGCAGAAGAC GGCATACGAGAT GCTGTAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT043	TACAGC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 044	CAAGCAGAAGAC GGCATACGAGAT ATTATAGTGACTG GAGTTCAGACGT GTGCTCTTCCGA TCTGATGTCCAC GAGGTCTCT	yes	IT044	ΤΑΤΑΑΤ	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 045	CAAGCAGAAGAC GGCATACGAGAT GAATGAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT045	TCATTC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 046	CAAGCAGAAGAC GGCATACGAGAT TCGGGAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT046	TCCCGA	TruSeq- derived indexed Bar- seq primer

Barseq_P2 _IT 047	CAAGCAGAAGAC GGCATACGAGAT CTTCGAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT047	TCGAAG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 048	CAAGCAGAAGAC GGCATACGAGAT TGCCGAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT048	TCGGCA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 049	CAAGCAGAAGAC GGCATACGAGAT ATGTTTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT049	AAACAT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 050	CAAGCAGAAGAC GGCATACGAGAT TGCTTTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT050	AAAGCA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 051	CAAGCAGAAGAC GGCATACGAGAT GCATTTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT051	AAATGC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 052	CAAGCAGAAGAC GGCATACGAGAT TTTGTTGTGACTG GAGTTCAGACGT GTGCTCTTCCGA TCTGATGTCCAC GAGGTCTCT	yes	IT052	AACAAA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 053	CAAGCAGAAGAC GGCATACGAGAT CAAGTTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT053	AACTTG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 054	CAAGCAGAAGAC GGCATACGAGAT AGTCTTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT054	AAGACT	TruSeq- derived indexed Bar- seq primer

Barseq_P2 _IT 055	CAAGCAGAAGAC GGCATACGAGAT TCGCTTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT055	AAGCGA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 056	CAAGCAGAAGAC GGCATACGAGAT GTCCTTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT056	AAGGAC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 057	CAAGCAGAAGAC GGCATACGAGAT CCTATTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT057	AATAGG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 058	CAAGCAGAAGAC GGCATACGAGAT GTTTGTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT058	ACAAAC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 059	CAAGCAGAAGAC GGCATACGAGAT AGATGTGTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT059	ACATCT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 060	CAAGCAGAAGAC GGCATACGAGAT CTGGGTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT060	ACCCAG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 061	CAAGCAGAAGAC GGCATACGAGAT GCCGGTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT061	ACCGGC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 062	CAAGCAGAAGAC GGCATACGAGAT TATCGTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT062	ACGATA	TruSeq- derived indexed Bar- seq primer

Barseq_P2 _IT 063	CAAGCAGAAGAC GGCATACGAGAT GAGAGTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT063	ACTCTC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 064	CAAGCAGAAGAC GGCATACGAGAT TCTTCTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT064	AGAAGA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 065	CAAGCAGAAGAC GGCATACGAGAT CTATCTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT065	AGATAG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 066	CAAGCAGAAGAC GGCATACGAGAT GATGCTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT066	AGCATC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 067	CAAGCAGAAGAC GGCATACGAGAT AGCGCTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT067	AGCGCT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 068	CAAGCAGAAGAC GGCATACGAGAT CGGCCTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT068	AGGCCG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 069	CAAGCAGAAGAC GGCATACGAGAT CCGTATGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT069	ATACGG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 070	CAAGCAGAAGAC GGCATACGAGAT TAGGATGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT070	ATCCTA	TruSeq- derived indexed Bar- seq primer

Barseq_P2 _IT 071	CAAGCAGAAGAC GGCATACGAGAT ATAGATGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT071	ATCTAT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 072	CAAGCAGAAGAC GGCATACGAGAT GCGTGGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT072	CCACGC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 073	CAAGCAGAAGAC GGCATACGAGAT CATGGGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT073	CCCATG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 074	CAAGCAGAAGAC GGCATACGAGAT TTGCGGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT074	CCGCAA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 075	CAAGCAGAAGAC GGCATACGAGAT CTAAGGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT075	CCTTAG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 076	CAAGCAGAAGAC GGCATACGAGAT TTCTCGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT076	CGAGAA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 077	CAAGCAGAAGAC GGCATACGAGAT CAGCAGGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT077	CTGCTG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 078	CAAGCAGAAGAC GGCATACGAGAT GGTTTCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT078	GAAACC	TruSeq- derived indexed Bar- seq primer

Barseq_P2 _IT 079	CAAGCAGAAGAC GGCATACGAGAT TTATTCGTGACTG GAGTTCAGACGT GTGCTCTTCCGA TCTGATGTCCAC GAGGTCTCT	yes	IT079	GAATAA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 080	CAAGCAGAAGAC GGCATACGAGAT TCCGTCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT080	GACGGA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 081	CAAGCAGAAGAC GGCATACGAGAT TATATCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT081	GATATA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 082	CAAGCAGAAGAC GGCATACGAGAT AGCATCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT082	GATGCT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 083	CAAGCAGAAGAC GGCATACGAGAT CCTTGCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT083	GCAAGG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 084	CAAGCAGAAGAC GGCATACGAGAT AAGTGCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT084	GCACTT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 085	CAAGCAGAAGAC GGCATACGAGAT TAAGGCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT085	GCCTTA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 086	CAAGCAGAAGAC GGCATACGAGAT TGGAGCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT086	GCTCCA	TruSeq- derived indexed Bar- seq primer

Barseq_P2 _IT 087	CAAGCAGAAGAC GGCATACGAGAT TGTGCCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT087	GGCACA	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 088	CAAGCAGAAGAC GGCATACGAGAT CAGGCCGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT088	GGCCTG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 089	CAAGCAGAAGAC GGCATACGAGAT GGTAGAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT089	TCTACC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 090	CAAGCAGAAGAC GGCATACGAGAT CATTCAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT090	TGAATG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 091	CAAGCAGAAGAC GGCATACGAGAT ATGGCAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT091	TGCCAT	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 092	CAAGCAGAAGAC GGCATACGAGAT CCAGCAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT092	TGCTGG	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 093	CAAGCAGAAGAC GGCATACGAGAT GCGCCAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT093	TGGCGC	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 094	CAAGCAGAAGAC GGCATACGAGAT TTCGAAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT094	TTCGAA	TruSeq- derived indexed Bar- seq primer

Barseq_P2 _IT 095	CAAGCAGAAGAC GGCATACGAGAT GGAGAAGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT095	ттстсс	TruSeq- derived indexed Bar- seq primer
Barseq_P2 _IT 096	CAAGCAGAAGAC GGCATACGAGAT AAACCTGTGACT GGAGTTCAGACG TGTGCTCTTCCG ATCTGATGTCCA CGAGGTCTCT	yes	IT096	AGGTTT	TruSeq- derived indexed Bar- seq primer

Supplementary Table 2: The custom oligos used to make the RB-TnSeq library in steps 87-90. The oligo MOD2_TruSeq is modified to carry 5'-phosphate, as denoted by '/5'P/'. The oligo Mod2_TS_Univ is modified by an internal phosphorothioate bond, as indicated by the '*'. The MOD2_TruSeq and Mod2_TS_Univ oligos are annealed to create a Y-adapter, as specified in Reagent Setup.

Oligo name	Oligo sequence	PAGE	Index	Index	Protocol	Description
MOD2_TruSeq	/5'P/GATCGGAA GAGCACACGTC TGAACTCCAGTC A	yes	name	<u>sequence</u>	87	Y-adapter for ligation to genomic DNA fragments (1/2)
Mod2_TS_Univ	ACGCTCTTCCGA TC*T	yes			87	Y-adapter for ligation to genomic DNA fragments (2/2)
Nspacer_barse q_universal	ATGATACGGCG ACCACCGAGAT CTACACTCTTTC CCTACACGACG CTCTTCCGATCT NNNNNGATGT CCACGAGGTCT	yes			88-90	Tn-specific primer for amplification of Tn-seq library
P7_i6	CAAGCAGAAGA CGGCATACGAG ATATTGGCGTGA CTGGAGTTCAG ACGTGTGCTCTT CCGATCT	yes	i6	GCCAAT	88-90	Adapter-specific primer for amplification of RB-TnSeq library, indexed

Supplementary Table 3: Oligos used to spot check strain assignments in the ordered library. The transposon insertion targeted for the PCR check is annotated with *position-(orientation)*. Every PCR check used Erm-out as the forward primer and a strain-specific reverse primer. These oligos were used to generate the data presented in Supplementary Figure 5.

Oligo name	Oligo sequence	Description		
		outward-oriented primer		
Erm-out	GCAGGTAATACGACTCACTATAG	for erm cassette		
		1224-(+) transposon		
BtErm-Check-P06G05	GATAAAATTGCATTGCACATTATCAC	insertion, P6-G5		
		796028-(-) transposon		
BtErm-Check-P18G11	GAGACACATCCTGAAATCATG	insertion, P18-G11		
		4810775-(+) transposon		
BtErm-Check-P20A06	TAATGCATGGGAGCTTCATG	insertion, P20-A6		
		3905852-(-) transposon		
BtErm-Check-P22B06	TACGGATAGCGTCGTC	insertion, P22-B6		
		233663-(-) transposon		
BtErm-Check-P23E01	TTGGTTCAGCGGTATGTG	insertion, P23-E1		
		4064363-(-) transposon		
BtErm-Check-P26A09	CAATACTCTCCATTTTCATCTGAC	insertion, P26-A9		
		4662683-(+) transposon		
BtErm-Check-P27E09	CTTAGCTAAATACAGTTACCTGG	insertion, P27-E9		
		3223007-(+) transposon		
BtErm-Check-P17B02-A	ATTAAAGGATGCATTACGTATATGTC	insertion, P17-B2		
		5788004-(-) transposon		
BtErm-Check-P17B02-B	CGTTCAGCTTATAAGCTTCAG	insertion, P17-B2		
		1864693-(+) transposon		
BtErm-Check-P18C02-A	CCCGAAACGIGIIIICAAIG	insertion, P18-C2		
	0770000000000000000	2999897-(-) transposon		
BtErm-Check-P18C02-B	GTTCGGGACAAAGAGATTC	Insertion, P18-C2		
BtErm Chack B26D00 A		3/3/285-(+) transposon		
BLEITH-CHECK-P20D09-A	CAGCEGIATGATIGICIATG	5488616 (L) transpoor		
BtErm Chook B26D00 B	ΑΤΟΛΟΤΛΟΟΤΤΟΛΟΟΤΟΤΛΟ	54000 10 - (+) II an sposon		
BLEITH-CHECK-F20D09-B	ATCAGTAGGTTCACCTGTAG	1409791 (+) transposon		
BtErm_Check_B31D11_A	CATACAGCAAAGCGAATACG	insertion $P31_D11$		
BILINI-CHECK-F3TDTT-A	GATACAGCAAAGCGAATACG	1004005-(-) transposon		
BtErm_Check_P31D11_B	TECTACEACEATCTETTC	insertion P31-D11		
DILIM-CHECK-I STDTT-D		18210-(-) transposon		
BtErm-Check-P32E07-A	AGGTGGTGTATTGCCTG	insertion P32-F7		
Bleim Glicok i Gel Gr //		207619-(-) transposon		
BtErm-Check-P32E07-B	CTTCATGCAAAAGCGATTG	insertion P32-F7		
		3926701-(+) transposon		
BtErm-Check-P38E06-A	GTACGACAGAGCAAAAATTAGC	insertion P38-E6		
		4207683-(+) transposon		
BtErm-Check-P38E06-B	CAAATAGCCTGTTTTACCCC	insertion. P38-E6		
		2248214-(+) transposon		
BtErm-Check-P39E08-A	TAATGTTGTCCTCCTTGCTG	insertion, P39-E8		
		3630139-(+) transposon		
BtErm-Check-P39E08-B	GCGTGGAATATTACCACATATTTC	insertion, P39-E8		
		2500909-(-) transposon		
BtErm-Check-P40D11-A	AACAGCGAAGGAGACAAG	insertion, P40-D11		
		3061114-(+) transposon		
BtErm-Check-P40D11-B	CGACTTCGTTCTAGAAACC	insertion, P40-D11		

Supplementary References

- 1 Holt J.G., K. N. R., Sneath P.H.A., Staley J.T., Williams S.T. *Bergey's Manual of Determinative Bacteriology*. 9th ed. edn, (Williams and Willkins, 1994).
- 2 Baym, M., Shaket, L., Anzai, I. A., Adesina, O. & Barstow, B. Rapid construction of a wholegenome transposon insertion collection for Shewanella oneidensis by Knockout Sudoku. *Nature communications* **7**, 13270 (2016).
- 3 Vandewalle, K., Festjens, N., Plets, E., Vuylsteke, M., Saeys, Y. & Callewaert, N. Characterization of genome-wide ordered sequence-tagged Mycobacterium mutant libraries by Cartesian Pooling-Coordinate Sequencing. *Nature communications* **6**, 7106 (2015).
- 4 Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. *Molecular Biology and Evolution* **34**, 1812-1819 (2017).
- 5 Edelstein, A. D., Tsuchida, M. A., Amodaj, N., Pinkard, H., Vale, R. D. & Stuurman, N. Advanced methods of microscope control using µManager software. *Journal of biological methods* **1** (2014).