Supplementary information

Identification, isolation and analysis of human gut-associated lymphoid tissues

In the format provided by the authors and unedited

Supplementary Table

Supplementary Table 1 | Patients included in this study.

	Non-	Crohn's
	diseased [†]	Disease
Number	79	5
Age	70.2 ± 9.3	48.2 ± 19.6
Sex		
Female	44	4
Male	35	1
Site		
Terminal		
ileum	56*	-
Recto-sigmoidal resection	23	-
Right-sided		
hemicolectomy	56*	-
Prox. Site:		
Cecum	14**	4
Ascending	21**	1
Transverse	25**	-
Diagnosis		
Volvulus	2	-
Diverticulitis	2 2 1	-
Stenosis	Ţ	-
Adenocarcinoma	74	-
UICC score:		
0	13	-
1	16	-
2 3	22	=
	18	=
4	5	_

^{† =} Macroscopically normal intestinal tissue >10 cm from tumor (if present).

Supplementary Video Legends

Supplementary Video 1 | Turning over full-thickness colon and ileum wall at Step 1, showing the basal and luminal side of each tissue.

Supplementary Video 2 | Cutting off fat, serosa and muscularis externa (Step 2) of colon.

^{* =} Paired samples.

^{** =} Multiple sites sampled from some patients.

Supplementary Video 3 | Trimming submucosa (Step 5) of colon.

Supplementary Video 4 | Initiation and peeling (Step 7) of colon.

Supplementary Video 5 | Initiation and peeling (Step 7) of ileum.

Supplementary Video 6 | Excision of methylene blue stained submucosal isolated lymphoid follicles from the peeled submucosa using a tissue punch (Step 12).

Supplementary Video 7 | Identification of a submucosal isolated lymphoid follicle from the basal side, and its association with a mucosal invagination on the luminal side, before the initiation of peeling (Step 6).

Supplementary Video 8 | Excision of mucosal isolated lymphoid follicles from peeled sigmoid colon lamina propria using a scalpel (Step 12).

Supplementary Methods

Quantification of GALT numbers and size

GALT size and number for **Fig. 4** and **Extended Data Fig. 1C-D** were analyzed as previously described⁸. SM-ILF and M-ILF size and number were assessed from images of MB counterstained SM or (unstained) peeled LP, respectively, using ImageJ (v 1.51k) software, assessing at least 2.5 cm² SM/LP per patient. Follicle area was obtained using the "circle" and

"ROI Manager" tools, providing a pixel count, followed by conversion of this pixel count into an area (mm²) based on a size bar, and finally using this to calculate the diameter. Only SM-ILF that had a circular shape with no irregularities were categorized as a SM-ILF. Other structures were categorized as either double/irregular or 3+ GALT based on their morphology and number of visible follicles⁸. The area of the double/irregular or 3+ GALT were calculated similar to SM-ILF, but with the "polygon" tool replacing the "circle" tool.

Flow cytometry

Flow cytometry was used in this study as an auxiliary method to determine leukocyte viability (**Fig. 2A**), cell numbers for individual isolated lymphoid follicles (**Fig. 2B-C**), the percentage of total leukocytes made up by various innate lymphoid cell subsets (**Fig. 3A-B** and **Extended Data Fig. 2**), and the effect of MB (**Extended Data Fig. 3**).

Digested cells were spun down (400 g for 5 min) and blocked in Brilliant stain buffer containing 3% mouse serum for 10 min, before the antibody mixture (prepared in brilliant stain buffer) was added for another 30 min. Samples were washed twice in PBS containing 2% FCS (FACS buffer), before being spun down (400 g for 5 min) and resuspended in FACS buffer (300 μ I), and filtered through 40 μ m mesh filters into FACS tubes. For intracellular ROR γ t staining, the Foxp3 Transcription Factor Staining Buffer Set wash used. First, digested cells were spun down (400 g for 5 min) and the pellets resuspended in Fixation buffer (100 μ I) for 30 min. Samples where then washed in Perm buffer before being spun down (500 g for 5 min) and resuspended in Perm buffer (50 μ I) containing 10% mouse serum for 15 min. Perm buffer (50 μ I) containing antihuman/mouse ROR γ t PE antibody, at a final concentration of 1:20, was added and left to stain for 30 min. The samples were then washed twice in Perm Buffer and resuspended in FACS buffer (300 μ I) and filtered through 40 μ m mesh filters into FACS tubes. The samples where acquired using a custom Fortessa Flow cytometer and FACS Diva software, and data analyzed using FlowJo software. Compensation was performed using OneComp and UltraComp eBeads.

Flow cytometry reagents

Brilliant stain buffer (BD; Cat. No. 566349).

Foxp3 / Transcription Factor Staining Buffer Set (Invitrogen, Thermo Fisher; cat. no. 00-5523-00).

Mouse serum (Sigma-Aldrich; cat. no. M5905-10ML).

Primary antibodies: CD45 BUV393 (BD; clone: HI30; cat. no. 563792; RRID:AB_2744400), CD3 BV510 (BD; clone: UCHT1, cat. no. 563109; RRID:AB_2732053), CD19 APC (BD; clone: HIB19, cat. no. 561742; RRID:AB_10894000), CD19 BV786 (BD; clone: SJ25C1; cat. no. 563325; RRID:AB_2744314), cKit PE-CF594 (BD; clone: YB5.B8; cat. no. 562407; RRID:AB_11154595), cKit PE-Cy5 (BD; clone: YB5.B8; cat. no. 559879; RRID:AB_397354), CD127 APC-R700 (BD; clone: HIL-7R-M21; cat. no. 565185; RRID:AB_2739099), HLA-DR FITC (BD; clone: G46-6; cat. no. 560944; RRID:AB_10562569), CD14 PE (Invitrogen; clone: 61D3, cat. no. 12-0149-42; RRID:AB_10598367), CD64 BV421 (BD; clone: 10.1; cat. no. 562872; RRID:AB_2737856), RORγt PE (eBioscience; clone: AFKJS-9; cat. no. 12-6988-82; RRID:AB_1834470), rat IgG2a PE Isotype Control (eBioscience; clone: eBR2a; cat. no. 12-4321-80; RRID:AB_1834380).

Viability dyes: 7-AAD (Invitrogen; cat. no. 00-6993-50), SYTOX[™] Green (Thermo Fisher Scientific; cat. no. R37168), Fixable viability stain 440UV (BD; cat. no. 566332), Fixable Viability Dye eFluor[™] 780 (eBioscience; cat. no. 65-0865-14). **! CAUTION** 7-AAD, CyTOX, Fixable viability stain 440UV and Fixable Viability Dye eFluor[™] 780 are hazardous reagents and should be handled using protective gloves, eye protection and clothing.

Brilliant stain buffer containing 3% mouse serum - 3 μ l mouse serum per 97 μ l brilliant stain buffer. Prepare fresh.

FACS buffer - 2 µl mouse serum per 98 µl PBS. Can be stored for at least one week at 4°C.

Fixation buffer – add 1-part Fixation Permeabilization Concentrate and 3 parts Fixation/Perm Diluent. Prepare Fresh.

Perm buffer – Add 1-part Permeabilization Buffer 10x and 9 parts double distilled water. Prepare fresh.

Flow cytometry equipment

FACS tubes (5 ml Polystyrene Round-Bottom Tube, 12x75 mm style; Fisher Scientific, Sweden)

FACS tubes with 40 µm mesh filter (5 ml Polystyrene Round-Bottom Tube with Cell-Strainer Cap, 12x75 mm style; Corning; Mexico).

Flow cytometer (Fortessa; BD).

OneComp eBeads[™] (Invitrogen; cat. no. 01-1111-42).

UltraComp eBeads[™] (Invitrogen; cat. no. 01-2222-42).

Software

FACS Diva Software (v8.0.2).

FlowJo (v10.2).

Immunohistochemistry

Confocal laser microscopy was used in this study as an auxiliary method to identify SM-ILF morphology in peeled SM (**Extended Data Fig. 1B**), to discern why PP could not be separated from the SM (**Extended Data Fig. 4B-C**), and to investigate the efficiency of separating LP and SM (**Extended Data Fig. 6**).

To prepare tissues for microscopy, intestinal samples including unseparated LP with SM, PP, as well as GALT-free LP and SM or separated tissue layers were fixed for 2-6h with 4% PFA in PBS at 4°C and 120 rpm. Fixed tissues were washed once and stored in histology wash/stain buffer. For imaging, washed tissues were either embedded in 4% low melting agarose in PBS and cut into 100 μm sections with a swinging blade microtome, or stained as whole tissues. For staining, sections and whole tissues were incubated overnight in 500 μl wash/stain buffer containing fluorescently labelled antibodies against epithelial cell adhesion molecule (EpCAM), alpha smooth muscle actin (αSMA), CD3, CD19 and CD45 in the indicated combinations, together with 4,6-diamidino-2-phenylindole (DAPI) to highlight cell nuclei. After additional washing in 5 ml histology wash/stain buffer, tissues were mounted on glass slides using ProLong Gold. Whole tissues were cleared overnight and subsequently mounted in Omnipaque® (iohexol) on glass slides. Images were acquired using a LSM700 or LSM710 confocal laser microscope and processed using the Zen v2.3 or Imaris v8 software.

Histology reagents

4,6-diamidino-2-phenylindole (DAPI; Thermo Fisher; cat. no. D1306; RRID: AB_2629482).

Histology wash/stain buffer - 474ml PBS + 25ml FCS (5%) + 1ml Triton X-100 (0.2%). Can be stored for at least one week at 4° C.

Low-melting point agarose (Invitrogen, cat. no. 16520-100).

Paraformaldehyde (PFA, Sigma-Aldrich, cat. no. P6148). ! CAUTION PFA is a hazardous reagent and should be handled in a chemical fume hood using protective gloves, clothes and mask.

Primary antibodies: Anti alpha smooth muscle actin Alexa Fluor® 488 (Abcam; clone 1A4; cat no. 184675; RRID: AB_2832195), anti EpCAM – Alexa Fluor® 594 (Biolegend; clone 9C4; cat no. 324228; RRID: AB_2563209), and anti CD45 – Alexa Fluor® 647 (Biolegend; clone HI30; cat no. 304018; RRID: AB_389336), CD45 - Alexa Fluor® 488 (Biolegend; clone HI30; cat no.

304017; RRID: AB_389314), anti CD3 - Alexa Fluor® 647 (BD Biosciences, clone UCHT1; cat no. 557706; RRID: AB_ 396815), anti CD19 – PE-CF594 (BD Biosciences, clone HIB19; cat no. 562321; RRID: AB_11153848).

ProLong Gold (Thermo Fisher, cat. no. P36930).

Triton-X100 (Sigma-Aldrich, cat. no. T8787).

Omnipaque (iohexol; GE Healthcare, cat. no. Y530).

Histology equipment

Falcon® 24 well clear flat bottom plates (Corning, cat. no. 353047).

Swinging blade microtome (Vibratome VT1200S; Leica).

Confocal laser microscope (LSM700 and LSM710; Zeiss).

Polysine Adhesion Slides (Thermo Fisher; cat. no. 10219280).

Glass cover slips (Hounisen; cat. no. 0422.2432).

Software

Imaris (version 8).

Zeiss Zen (v2.3).