
How to use the algorithm

Part 1 : Overview of the procedure

Part 2 : Step-by step procedures for operating provided Python codes

2.1 Overlay of DFM image and FM image obtained by a dual-mode microscope

2.2 Overlay of DFM image and FM image obtained by a DFM microscope and a
fluorescence microscope

2.3 Analysis of aggregation states of SNAs with colorimetry-based classification
algorithm

Part 3 : Data examples for analyzing classification of intracellular SNAs

3.1 Data examples

3.2 Important steps for optimizing algorithm parameter



Part 1 : Overview of the procedure
We are not very good at coding. The codes we provided may be not well documented. We
suggest to optimize them according to your specific studies if possible. For those wanting to
try it out:

System Requirements：
1. Hardware Requirements
Personal computer, desktop/laptop (Operating system: Windows or Mac, we have not tried Linux).

2. Software Requirements
All scripts are written in Python 2. It is recommended to download the latest version of Python 2.7.
The following Python libraries are also required:
Pillow (6.1.0)
Opencv-python (4.1.1.26)
numpy (1.16.5)
scipy (0.13.0b1)
matplotlib (2.2.4)

Atom (https://atom.io) provides a way to quickly edit Python scripts. If you install Atom, you can
edit and run codes in Atom.

Installation guide:
Download and install Python 2.7 and Atom.
Install package mentioned with pip (e.g. ‘pip install matplotlib’)
Download scripts from file folder ‘python_scripts’. We provided five ‘.py’ files in total (see Table
1 below).
Typical install time - up to one hour.

Table 1: The list of manual programs we provide.

File name Function Procedure
“pic_overlay_dual mode.py” To merge the images of DFM and FM

obtained by a dual-mode microscope
Section 2.1

“pic_overlay_DFM_FM.py” To merge the images of DFM and FM
obtained by a DFM microscope and a
fluorescence microscope

Section 2.2
“pic_overlay_DFM_FM2.py”

“darkfield_analysis_protocols.py” To analyze the aggregation states of SNAs
with colorimetry-based classification
algorithm

Section 2.3
“read_pixel_protocols.py”



Part 2: Step-by step procedures for operating provided programs
2.1 Overlay of DFM image and FM image obtained by a dual-mode microscope

The demo INPUT DFM image and FM image are provided in the folder “test_data/dual_mode”, and
the expected OUTPUT image is provided in the same folder with a file name “Expect_result.tif”. We
use a mac laptop to run our programs. Expected run time is 20~30 seconds.

! CAUTION The parameters (X_shift and Y_shift) applied in the provided Python code are
optimized for our own experimental setup and conditions. Further optimization may be needed for
particular studies.
1. Open the file pic_overlay_dual mode.py with python text editor (for example, Atom,
https://atom.io ).

2. Change “File Path” and “File name” to your own file name in lines 2, 3 and 6.
3. Change “Y_shift” and “X_shift” to your own shift in lines 4.
4. Run the edited code.

2.2 Overlay of DFM image and FM image obtained by a DFM microscope and a
fluorescence microscope

The demo INPUT DFM image and FM image are provided in the folder “test_data/DFM_FM”, and the
expected OUTPUT image is provided in the same folder with a file name “Expect_result.tif”. We use a
mac laptop to run our programs. Expected run time is 20~30 seconds.

! CAUTION The parameters (X_shift ,Y_shift and rotation angles) applied in the provided
Python code are optimized for our own experimental setup and conditions. Further optimization
may be needed for particular studies.
1. Open the file pic_overlay_DFM_FM.py with python text editor (for example, Atom,

https://atom.io ).
2. Change the “Ratio” to your own in line 8.
3. Change the “Rotate Angle” to your own in line 9.
4. Change the name of “Input file (DFM image and confocal image)” to your own file name in

line 15 and 16, and the name of “output file” to your own file name in line 17.
5. Change “Y_shift” and “X_shift” to your own shift in lines 17.
6. Open the output file, evaluate the performance of this program. If not right, adjust the

parameters in step 3 and 5, until the large spots in DFM and FM image colocalize with each
other well.

(Optional) If you want to change the fake color of FM image, or change the color of DFM
image into a fake color, do the following process.
7. Open the file pic_overlay_DFM_FM2.py with python text editor (for example, Atom,

https://atom.io ).
8. Repeat steps 2-5. (Be aware that the location of “Ratio”, “Rotate Angle”, “Input file”, “Output

file” “Y_shift” and “X_shift” have been changed).
9. Change the color to your required fake color, e.g. r represents red in FM image, rG represents

https://atom.io
https://atom.io
https://atom.io


red channel in DFM image.

2.3 Analysis of aggregation states of SNAs with colorimetry-based classification
algorithm (Figure H1)
1. Put two py files, darkfield_analysis_protocols.py and read_pixel_protocols.py, in the same

file folder.
2. Open the file darkfield_analysis_protocols.py with python text editor (for example, Atom,

https://atom.io ).
3. Change the “input file”, “output file”, “name rule” ,“size of output image”, “the color, shape

and size of output spot”, “name of output image” and “name of output file” in line 74, 75, 83,
97, 126, 144 and 145 to your own, respectively. (In order to find these lines easily, we make
notes in the responding lines, e.g. # input file in line 74). (The location of lines was marked by
red square, and the “#” were marked by blue square).

4. Change the range of x and y in line 64. The number represent the size of intensity spot which
may be SNAs.

5. Open the file read_pixel_protocols.py with python text editor (for example, Atom,
https://atom.io ).

6. Change the “H threshold” and “S threshold”, “I threshold” in line 38, 106, and 119 to your
own, respectively. (In order to find these lines easily, we make notes in the responding lines,
e.g. # the H threshold in line 38).

7. Change the boundary criteria to your own in function reference. (In order to find the function
easily, we make a note above the function, “““the boundary of domains”””, which marked
by orange square).

8. Save this edit in file read_pixel_protocols.py.
9. Run the file darkfield_analysis_protocols.py.

Figure H1. Schematic of the Atom interface. Here, major information was highlighted. The
location of lines was marked by red square, “#” was marked by blue square and “““ ””” was
marked by orange square.

Part 3: Data example for analyzing classification of intracellular

SNAs
3.1 Data examples
Here we describe the procedure by taking DFM image in Fig.7 as the example.

The INPUT DFM image is provided in the folder “test_data/dna2hours”, with a file name “20.jpg”, and
the expected OUTPUT image is provided in the same with a file name “expect_result.jpg”.

https://atom.io
https://atom.io


! CAUTION The parameters we applied in this example is shown in Table S1. The parameter
setting procedure was appended in Supplementary Information. We use a mac to run our
programs.
1. Open the file darkfield_analysis.py in “python_scripts” file folder with python text editor (for

example, Atom, https://atom.io ).
2. Change the name of “input file” and “output file” into “test_data/dna2hours” in line 74,75.

Figure H2. Code lines 74-75

3. Change the “name rule” of image to “\d+.jpg” in line 83.
4. Change the “size of output image” to “size [1]/50/1.54, size [0]/50/1.54” in line 97.
! CAUTION We have tried for many times and found that these values match the size of original
images best.
5. In line 125, 129, 133, and 138, we determine the markerfacecolor, markersize and

markershape of a single particle, small cluster, and large cluster as blue circle (10 pixels),
green square (10 pixels) and red triangle (10 pixels), respectively.

Figure H3. The contents of lines 124-139

6. In line 144 and 145, we determine the “name of output image” and “name of output file” as
“.png” and “.csv”.

7. In line 64, we determine the x and y range as 1< x < 20 && 1<y<20.
8. Open the file read_pixel_protocols.py with python text editor in the same file folder.
9. We determine the “H threshold” and “S threshold”, “I threshold” in line 38, 106, and 119 as

120, 0.33 and 240.
10. Determine the boundary of domain in lines 9-27 according to Table S1 in Supplementary

Information.
11. Press “command + s” in mac os.
! CAUTION ctrl + shift + B in windows
12. Switch to darkfield_analysis.py, and press “command + i” in mac os.
13. Procedure

https://atom.io


3.2 The procedures for optimizing parameter for your own experimental conditions.

“darkfield_analysis_protocols.py”
“read_pixel_protocols.py”

1. The region of interest (ROI) in the original dark-field image was extracted by ImageJ.

2. Load a selected dark-field image into Python program “darkfield_analysis_protocols.py”. The
dark-field image was converted to gray mode in code line 18-19. In our case, the single particles
with weak scattering intensity are observed as dark-green spots in DFM image, so we convert the
original dark-field image of RGB mode to a green-channel image of gray mode.

Figure H4. Code lines 18-19.

3. Set brightness threshold (T)1 in the green channel to depict most of SNAs’ signal from
background in code line 20-21 (darkfield_analysis_protocols.py, default 80, 160). Analyze at least
10 randomly selected SNAs of weak brightness, to obtain a proper value of (TL) for recognizing
image spots of weak signal from background. Analyze at least 10 randomly selected SNAs of
strong brightness, to obtain a proper value of (TU) to efficiently separate two neighboring image
spots of strong signal. By typing “imshow contours_below” and “imshow contours_upper” below
code line 21, two binary images are generated as temporary files. Based on these two images, the
values of brightness threshold (TL) and (TU) can be evaluated.

! CAUTION Delete “imshow contours_below” and “imshow contours_upper” under code line 21,
before continue with program running.

Figure H5. Code lines 20-21.

4. Set the value of segment volume (V) threshold in code line 64 (darkfield_analysis_protocols.py,
default 1 <threshold < 20). The value of (V) is quickly determined by counting the number of
pixels in non-target image spots. In our case, the observed pixel number of loose assembly of
SNAs, dust or defects on glass slides are generally bigger than 20, and the ones of noises are
smaller than 2, thererfore, we set 1 <(V) < 20 in either x or y axis.

Figure H6. Code line 64



5. Set the value of Hue thresholdin (H) in code lines38-40 & 110-117 (read_pixel_protocol.py,
default 120,4). Specifically, this threshold is sensitive to experimental design. In details, the spots
of gold nanoparticles (50 nm in diameter) generally exhibit green-to-red color under DFM
imaging, therefore, we use Hue threshold (blue color) to exclude the off-focus image spots. If
other plasmonic particles are used, such as silver or copper exhibit blue color under DFM imaging,
this threshold has to be excluded from the program.

Figure H7. Code lines 38-40

Figure H8. Code lines 110-117

6. Set the value of saturation threshold (S) in code lines 119-124 (read_pixel_protocol.py).
Specifically, this threshold is sensitive to experimental design. The values are dependent on
cellular background under DFM imaging. For cellular organelles, the averaged value of saturation
is obtained based on the correlation of HSB mode and RGB mode in the color map. In our case, (S)
is commonly set as 0.33.

CRITICAL STEP For image spots of cellular organelles under DFM imaging, the averaged
value of saturation is highly sensitive to cellular background. It is necessary to adjust (S) for each
cellular experiment.
! CAUTION If the cellular background is too strong, set (S) to 0 in code line 119 and 122 to
skip this step.

Figure H9. Code lines 119-124

7. Set the maximum intensity threshold (I) in code lines 106-107 (read_pixel_protocol.py).
Randomly select at least 10 bright yellow spots, calculate intensity of each pixel in these bright
yellow spots according to Equation11 to obtain the value of maximum intensity. The value of (I) is
set according to the averaged value of these maximum intensity. In our case, the value of (I) is set



as 240.

I = R * 0.114 + G * 0.5876 + B * 0.299 Equation 1

! CAUTION The bright yellow spots representing large clusters can be directed recognized at this
step, without need to continue with the program.

Figure H10. Code lines 106-107
8. Set the color domain boundaries in the CIE map in code lines 12-24 (read_pixel_protocol.py)
based on the correlation of spectra profile and clustering states of your plasmonic nanoprobes. In
our case, three domains are set in the CIE map, which are domain I for single particles (maximum
scattering wavelength between 530 and 570 nm), domain II for small clusters (maximum
scattering wavelength between 570 and 580 nm), and domain III for large clusters (maximum
scattering wavelength between 580 and 620 nm).

Figure H11. Code lines 12-24

Reference:

1. Jing, C., et al., New Insights into Electrocatalysis Based on Plasmon Resonance for the
Real-Time Monitoring of Catalytic Events on Single Gold Nanorods. Anal Chem, 86, 5513-5518
(2014).


